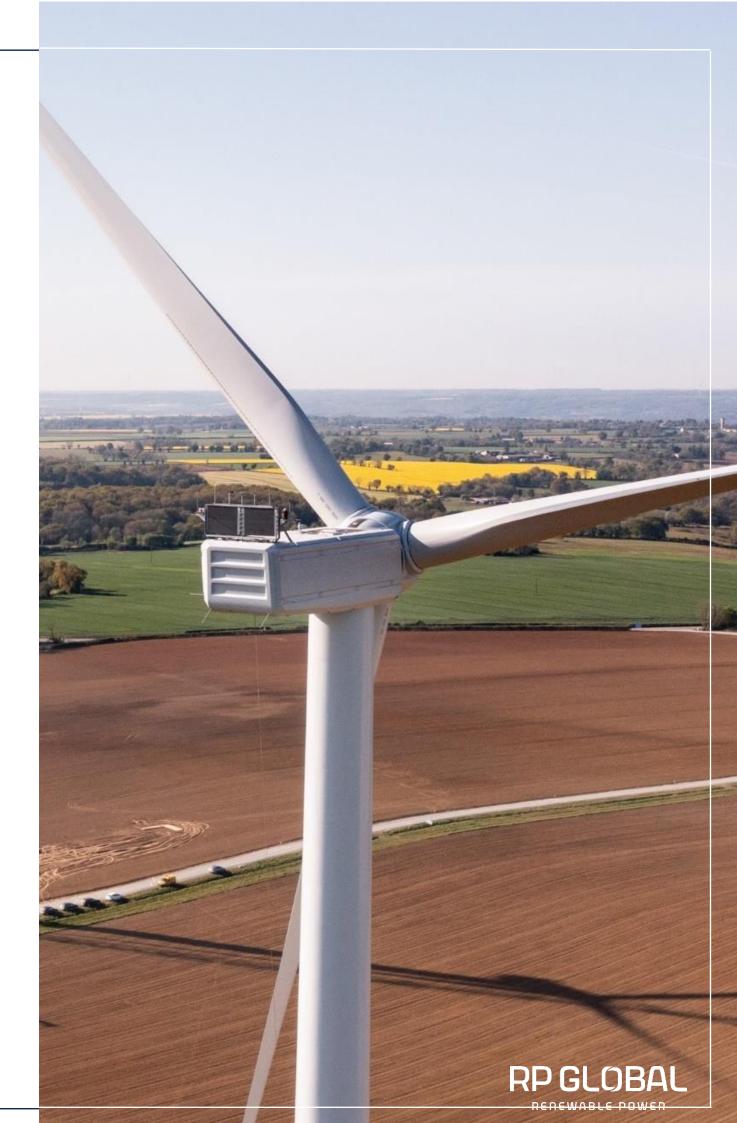
7_1 ÉTUDE DE DANGER ET SON RÉSUMÉ NON TECHNIQUE

VERSION – DECEMBRE 2023

ÉTUDE D'IMPACT SUR L'ENVIRONNEMENT ET LA SANTÉ PUBLIQUE


PARC ÉOLIEN « LES FROIDS VENTS »

Contact à privilégier :

Alban GODFRIND Chef de projet 213 Boulevard de Turin 59777 LILLE +33 (0)3 20 51 16 59

TPGLOBAL

Préambule

Le présent document est une pièce constitutive des différents documents composant le dossier de demande d'autorisation environnementale concernant le projet du parc éolien « Les Froids Vents ».

Ce dossier est présenté par RP GLOBAL France, porteur du projet, pour le compte de la SARL « Les Froids Vents ». La configuration de ce projet est le résultat de la prise en compte de plusieurs critères :

- Le potentiel du site
- L'adéquation avec les politiques locales et zones identifiées
- L'impact écologique
- Le respect du patrimoine territorial et paysager
- Les volontés locales quant à l'intégration du parc

Le parc éolien des froids Vents est donc le fruit d'une co-construction entre RP GLOBAL France et les acteurs locaux, grâce à différents temps d'échanges et de travail sur toute la durée du développement du projet.

Au-delà de permettre la bonne information des habitants, cette instance a permis de déceler des points de sensibilité ressentis par la population. Les échanges issus de cette concertation ont permis l'élaboration de mesures en adéquation avec les attentes du territoire. La situation sanitaire actuelle ne nous permettant plus d'effectuer ses RDV de travail en présentiel, nous avons axés la communication du projet, depuis mars 2020, sur une stratégie digitale et un site internet officiel d'informations autour du projet, disponible ici :

www.parc-eolien-chepoix.fr

LE PROJET EN BREF:

4

180

18

14 000

12 000

ÉOLIENNES

MÈTRES BOUT DE PALE

MW

TONNES DE CO2 EVITÉES PAR AN FOYERS ALIMENTÉS (Chauffage inclus)

Nos valeurs fondamentales

QUALITÉ:

RP GLOBAL est en recherche permanente d'une qualité irréprochable dans le développement de ses projets, et ce à toutes les étapes, envers son équipe interne et ses partenaires, afin de garantir aux territoires un projet durable et sain.

INNOVATION:

Grâce à son expérience et à la solidité de son groupe, RP GLOBAL adopte une approche innovante sur les projets développés : nouvelles énergies (photovoltaïque), mix énergétique (photovoltaïque et éolien), concertation adaptée aux nouveaux usages, outils de communication, ...

PROXIMITE:

Avec la mise en place d'une équipe projet dédiée, du foncier jusqu'à l'exploitation du parc, au plus proche des acteurs du territoire.

CONCERTATION:

C'est par l'acceptabilité qu'un projet gagne en qualité et devient durable. RP GLOBAL s'engage sur le territoire à informer régulièrement sur les avancées des projets grâce à des permanences, Comités Locaux de Suivi, réunions d'information, sites internet dédiés et outils digitaux.

CITOYEN:

Pour des projets fédérateurs, liés aux volontés citoyennes, pour contribuer à atteindre les objectifs fixés par l'Etat, et œuvrer pour la transition énergétique des territoires.

DURABLE

RP GLOBAL devient un membre actif des communautés locales sur lesquelles chaque projet s'implante et souhaite ainsi construire un rapport sain et durable avec toutes les parties prenantes.

SOMMAIRE

1	RESUME NON TECHNIQUE DE L'ETUDE DE DANGER	
	1.1 DESCRIPTION DU PROJET	
	1.2 PRINCIPAUX INTERETS A PROTEGER EN CAS D'ACCIDENT.1.3 L'ANALYSE DES RISQUES.	
	1.3.1 Les sources de dangers	
	1.3.2 Principe de l'analyse des risques	1
	1.3.3 L'évaluation des risques	
	1.3.4 L'évaluation de la probabilité	
	1.3.5 L'évaluation de la gravité	1
	1.4 L'ANALYSE PRÉLIMINAIRE DES RISQUES	1
	1.4.1 Analyse du retour d'expérience	1
	1.4.2 Analyse préliminaire des risques	
	1.4.3 Mesures de maîtrise des risques	
	1.5 L'ÉTUDE DÉTAILLEE DES RISQUES	
	1.5.1 Objectifs de l'analyse détaillée des risques	1
	1.5.2 Les résultats de l'Étude Détaillée des Risques	
	1.5.3 Carte des risques avec zones de risques et vulnérabilités identifiées	
_		
2	PREAMBULE ETUDE DE DANGER	
	2.1 OBJECTIFS DE L'ETUDE DE DANGERS	
	2.2 CONTEXTE LEGISLATIF ET REGLEMENTAIRE.2.3 NOMENCLATURE DES INSTALLATIONS CLASSEES	
3	INFORMATIONS GENERALES CONCERNANT L'INSTALLATION	
	3.1 Renseignements administratifs	
	3.2 CONTEXTE DE L'ETUDE ET LOCALISATION DU SITE. 3.3 DEFINITION DE L'AIRE D'ETUDE	
4	DESCRIPTION DE L'ENVIRONNEMENT DE L'INSTALLATION	
	4.1 ENVIRONNEMENT HUMAIN	
	4.1.1 Zones urbanisées	
	4.1.3 Installations Classées pour la Protection de l'Environnement (ICPE) et installations nucléaires de	
	base 23	
	4.1.4 Autres activités	
	4.2.1 Contexte climatique	
	4.2.2 Risques naturels	
	4.2.3 Environnement matériel	2
	4.2.4 Cartographie de synthèse	3
5	DESCRIPTION DE L'INSTALLATION	3
	5.1 CARACTERISTIQUES DE L'INSTALLATION	3
	5.1.1 Caractéristique générale d'un parc éolien	
	5.1.2 Activités de l'installation	4
	5.1.3 Composition de l'installation	
	5.2 FONCTIONNEMENT DE L'INSTALLATION	4
	5.2.2 Sécurité de l'installation	
	5.2.3 Nature et organisation des secours	4
	5.2.4 Opérations de maintenance de l'installation	4
	5.2.5 Stockage et flux de produits dangereux	
	J.Z.O I OHCHOHHEHEHE WES FESEWAX WE CHISLACTURE	ر

6	IDENTIFICATION DES POTENTIELS DE DANGERS DE L'INSTALLATION	. 53
	6.1 POTENTIELS DE DANGERS LIES AUX PRODUITS	
	6.3 REDUCTION DES POTENTIELS DE DANGERS A LA SOURCE	
	6.3.1 Principales actions préventives	
	6.3.2 Utilisation des meilleurs techniques disponibles	
7		
•		
	7.1 INVENTAIRE DES ACCIDENTS ET INCIDENTS EN FRANCE	
	 7.2 INVENTAIRE DES ACCIDENTS ET INCIDENTS A L'INTERNATIONAL. 7.3 INVENTAIRE DES ACCIDENTS ET INCIDENTS A L'INTERNATIONAL. 	
	7.3 INVENTAIRE DES ACCIDENTS ET INCIDENTS A L'INTERNATIONAL	
	7.5.1 Analyse d'évolution des accidents en France	
	7.5.2 Analyse des typologies d'accidents les plus fréquents	
	7.6 LIMITES D'UTILISATION DE L'ACCIDENTOLOGIE	59
8		
0		
	8.1 OBJECTIF DE L'ANALYSE PRELIMINAIRE DES RISQUES	
	8.2 RECENSEMENT DES EVENEMENTS INITIATEURS EXCLUS DE L'ANALYSE DES RISQUES	
	8.3 RECENSEMENT DES AGRESSIONS EXTERNES POTENTIELLES	
	8.3.2 Agressions externes liées aux activites numames	
	8.4 Scenarios etudies dans L'analyse preliminaire des risques (APR)	
	8.5 EFFETS DOMINOS	
	8.6 MISE EN PLACE DES MESURES DE SECURITE	
	8.7 CONCLUSION DE L'ANALYSE PRELIMINAIRE DES RISQUES	
9	ETUDE DETAILLEE DES RISQUES	. 69
	9.1 RAPPEL DES DEFINITIONS	69
	9.1.1 Cinétique	
	9.1.2 Intensité	
	9.1.3 Gravité	
	9.1.4 Probabilité	
	9.1.5 Acceptabilité 9.3 CARACTERISATION DES SCENARIOS RETENUS.	
	9.3.1 Effondrement de l'éolienne	
	9.3.2 Chute d'éléments de l'éolienne	
	9.3.3 Chute de glace	
	9.3.4 Projection de pales ou de fragments de pales	
	9.3.5 Projection de glace	
	9.4 SYNTHESE DE L'ETUDE DETAILLEE	
	9.4.1 Tableaux de synthèse des scénarios étudiés	
	9.4.2 Synthèse de l'acceptabilité des risques	
	9.4.3 Cartographie des risques (pages suivantes)	82
1	0 CONCLUSION	. 88
1	1 ANNEXES	. 89
	11.1 ANNEXE 1 - MÉTHODE DE COMPTAGE DES PERSONNES POUR LA DÉTERMINATION DE LA GRAVITÉ	
	POTENTIELLE D'UN ACCIDENT À PROXIMITÉ D'UNE ÉOLIENNE	
	11.2 ANNEXE 2 - TABLEAU DE L'ACCIDENTOLOGIE FRANÇAISE	
	11.3 ANNEXE 3 - SCÉNARIOS GÉNÉRIQUES ISSUS DE L'ANALYSE PRÉLIMINAIRE DES RISQUES	
	11.5 ANNEXE 5 - PROBABILITE D'ATTEINTE ET RISQUE INDIVIDUEL	
	11.6 ANNEXE 6 - GLOSSAIRE	109

LISTE DES FIGURES

Figure 1 -	Diagramme ombrothermique de la station de Beauvais-Tillé	2
Figure 2 -	Distribution de la direction des vents au niveau de la station de Beauvais-Tillé	
Figure 3 -	Distribution de la direction des vents entre juin 2020 et juin 2021	
Figure 4 -	Schéma simplifié d'un aérogénérateur	
Figure 5 -	Illustration des emprises au sol d'une éolienne	
Figure 6 -	Fiche de sécurité d'intervention des secours	
Figure 7 -	Raccordement électrique des installations	5
Figure 8 -	Répartition des différents types d'événements et des causes (2001 - S1 2023)	5
Figure 9 -	Répartition des cas d'incidents en France entre 2000 et S1 2023	5
Figure 10 -	Répartition des causes premières d'effondrement entre 2000 et S1 2023	5
Figure 11 -	Répartition des causes premières de chutes/ruptures de pales entre 2000 et \$1 2023	5
Figure 12 -	Répartition des causes premières des incendies entre 2000 et S1 2023	5
Figure 13 -	Répartition des accidents liés à des parcs éoliens dans le monde entre 2000 et 2023	5
Figure 14 -	Répartition des causes premières d'effondrement	5
Figure 15 -	Répartition des causes premières de rupture de pale	5
Figure 16 -	Répartition des causes premières d'incendie	5
Figure 17 -	Evolution du nombre d'incidents annuels et nombre d'éoliennes installées depuis 2000	5

LISTE DES TABLEAUX

Tableau 1.	Modèle(s) d'aérogénérateur(s) pressenti(s)	6
Tableau 1.	Gabarit maximaliste retenu pour la réalisation de l'étude de dangers	
Tableau 2.	Coordonnées géographiques des éoliennes et des postes de livraison	
Tableau 3.	Distances vis-à-vis des habitations les plus proches	
Tableau 4.	Généralité sur les communes du périmètre immédiat	23
Tableau 5.	Distance vis-à-vis des habitations les plus proches	23
Tableau 6.	Décomposition synthétique des surfaces considérées dans les zones autour de chaque éolien	ne 33
Tableau 7.	Décomposition des surfaces considérées dans les zones autour de chaque éolienne	33
Tableau 8.	Modèles d'aérogénérateurs pressentis dans le cadre de l'étude de dangers	40
Tableau 9.	Coordonnées géographiques des éoliennes et du poste de livraison	41
Tableau 1.	Gabarit maximaliste retenu pour la réalisation de l'étude de dangers	41
Tableau 2.	Présentation des différentes composantes de l'installation	44
Tableau 3.	Liste des dangers potentiels identifiés dans le cadre du fonctionnement d'un parc éolien	54
Tableau 4.	Principales agressions externes liées aux activités humaines	60
Tableau 5.	Principales agressions externes liées aux phénomènes naturels	60
Tableau 6.	Grille de cotation en intensité issue du guide technique	70
Tableau 7.	Grille de cotation en gravité de l'arrêté du 29 Septembre 2005	70
Tableau 8.	Grille de cotation en probabilité de l'arrêté du 29 septembre 2005	71
Tableau 1.	Cotation des risques selon la matrice de criticité de la circulaire du 10 mai 2010	71

LISTE DES CARTES

Carte 1 -	Localisation du projet éolien Les Froids Vents	7
Carte 2 -	Distance des éoliennes du projet Les Froids Vents aux habitations	
Carte 3 -	Carte des enjeux du parc éolien Les Froids Vents	11
Carte 4 -	Carte de synthèse des risques	16
Carte 5 -	Localisation des installations envisagées	20
Carte 6 -	Définition des zones d'étude autour de chaque installation du projet	22
Carte 7 -	Distance aux habitations et aux zones urbanisables	24
Carte 8 -	Types de climat en France	25
Carte 9 -	Zonage sismique en vigueur depuis le 1er mai 2011	26
Carte 10 -	Risques naturels : Mouvement, effondrement de terrain et aléa retrait / gonflement des 28	_
Carte 11 -	Fréquence des tornades par rapport à la moyenne nationale	
Carte 12 -	Extrait de la carte des trafic routiers 2013 dans le département de l'Oise	29
Carte 13 -	Voies de communication	31
		32
Carte 14 -	Cartographie des réseaux	
Carte 15 -	Synthèse de l'exposition globale à l'ensemble du parc éolien	
Carte 16 -	Synthèse de l'exposition pour l'éolienne E2	
Carte 17 -	Synthèse de l'exposition pour l'éolienne E3	
Carte 18 -	Synthèse de l'exposition pour l'éolienne E4	38
Carte 19 -	Plan détaillé de l'installation	
Carte 20 -	Localisation des centres d'incendie et de secours de l'Oise	
Carte 21 -	Réseau inter-éolien du projet éolien	52
Carte 22 -	Synthèse de l'ensemble des risques étudiés	83
Carte 23 -	Carte des risques - Eolienne E1	84
Carte 24 -	Carte des risques - Eolienne E2	85
Carte 25 -	Carte des risques - Eolienne E3	86
Carte 26 -	Carte des risques - Eolienne E4	87

1 RESUME NON TECHNIQUE DE L'ETUDE DE DANGER

Selon l'article L. 512-1 du Code de l'environnement, l'étude de dangers expose les risques que peut présenter l'installation pour les intérêts visés à l'article L. 511-1 en cas d'accident, que la cause soit interne ou externe à l'installation. Les impacts de l'installation sur ces intérêts en fonctionnement normal sont traités dans l'étude d'impact sur l'environnement.

La démarche de l'étude consiste en une identification des dangers, des enjeux vulnérables et des conséquences éventuelles d'accidents. L'ajout systématique de mesures de prévention et/ou de protection doit permettre de diminuer le niveau de risque à un niveau acceptable.

La présente étude de dangers a pour objet de rendre compte de l'examen effectué par la société **RP GLOBAL**, pour caractériser, analyser, évaluer, prévenir et réduire les risques du parc éolien Les Froids Vents.

Cette étude se base sur le guide technique version de mai 2012, qui a été réalisé par un groupe de travail constitué de l'INERIS et de professionnels du Syndicat des Energies Renouvelables. Dans la suite de l'étude, ce guide sera appelé « guide technique ».

1.1 DESCRIPTION DU PROJET

Le projet de parc éolien Les Froids Vents prévoit la mise en place de 4 éoliennes et deux postes de livraison (cf. carte 1 de situation - page suivante).

L'aire d'étude (périmètre de 500 m autour des éoliennes) se situe sur les communes suivantes :

- Chepoix;
- Beauvoir;
- Bacouël;
- Bonvillers.

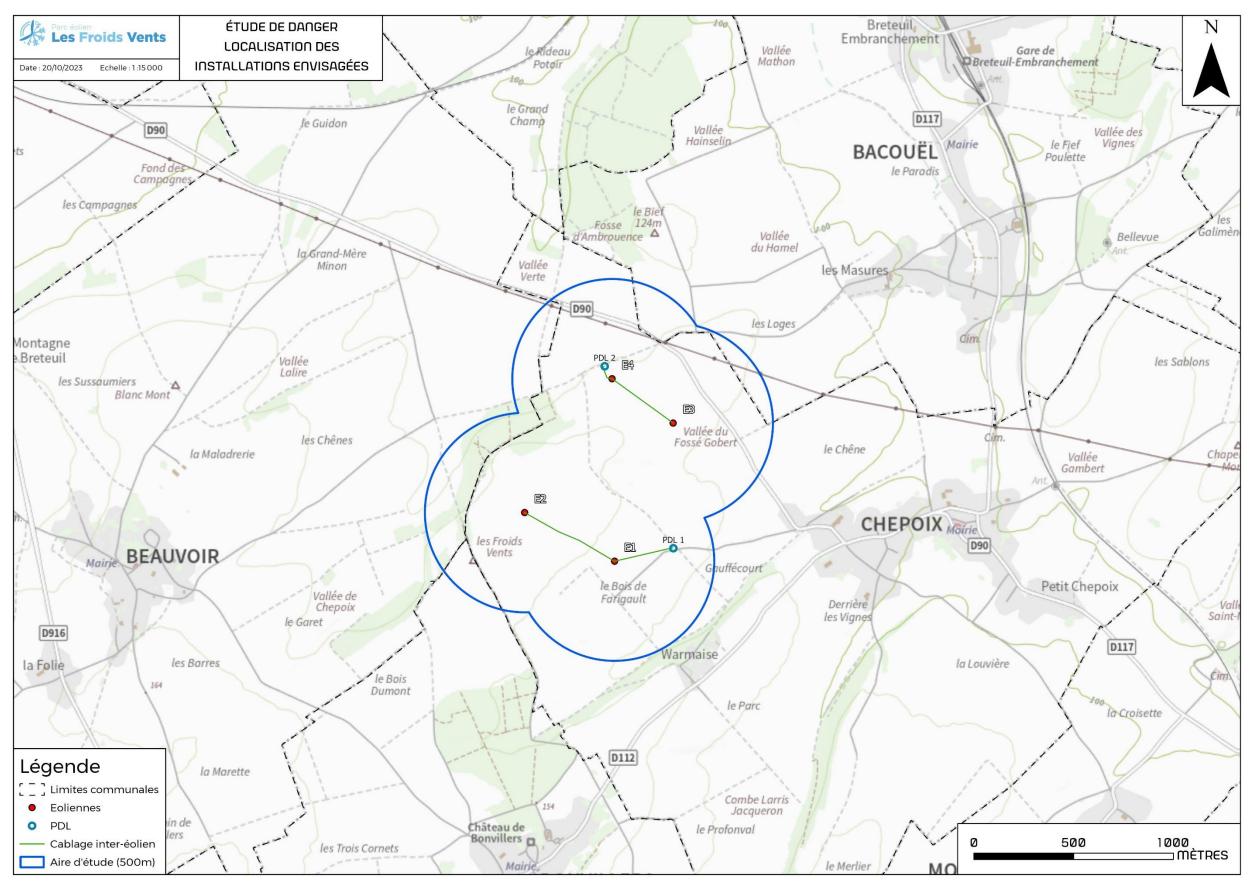
Le projet consiste en l'élaboration d'un parc éolien situé sur la commune de Chepoix. Cette commune fait partie de la Communauté de Communes de l'Oise-Picardie, dans le département de l'Oise (60).

Plusieurs types d'aérogénérateurs ont été étudiés.

Un type a été finalement retenu pour le projet : VESTAS V150 - 4,5 MW

Eolienne	VESTAS V150 - 4,5 MW
Puissance nominale	4 500 kW
Diamètre du rotor	150 m
Longueur d'une pale	73 m
Largeur maximale d'une pale (Corde)	4,2 m
Hauteur de moyeu	105m
Diamètre maximum à la base	4 m
Hauteur en bout de pale	180m

Tableau 1. Modèle(s) d'aérogénérateur(s) pressenti(s)


Le gabarit retenu pour cette étude est donc :

	E1-E2-E3-E4
Puissance nominale	4 500 kW
Diamètre du rotor	150 m
Longueur d'une pale	73 m
Largeur maximale d'une pale (Corde)	4,2 m
Hauteur de moyeu	105 m
Diamètre maximum à la base	4 m
Hauteur en bout de pale	180 m

Tableau 1. Gabarit maximaliste retenu pour la réalisation de l'étude de dangers

Carte 1 - Localisation du projet éolien Les Froids Vents

Le tableau suivant indique les coordonnées géographiques des 4 aérogénérateurs et des deux postes de livraison :

	Coordonnées en Lambert 93					
	X Y Altitude en m NGF Altitude en m NGF au sol maximale (bout de pa					
E1	653755	6945143	133 m	313 m		
E2	653305	6945387 152 m 332 m		332 m		
E3	654049	6945835	310 m			
E4	653743	653743 6946057 126 m				
Postes de livraison 1	654047	654047 6945210 124 m 653704 6946119 121 m				
Postes de livraison 2	653704					

Tableau 2. Coordonnées géographiques des éoliennes et des postes de livraison

1.2 PRINCIPAUX INTERETS A PROTEGER EN CAS D'ACCIDENT

La carte 2 ci-après expose les zones urbanisées ainsi que les habitations à proximité de la zone d'étude. Les habitations des communes du périmètre immédiat sont de type maison individuelle. Les ménages sont majoritairement propriétaires et leur habitation est leur résidence principale.

Les zones d'habitation les plus proches de la zone se situent à l'ouest du centre-ville de Chepoix. Les autres bourgs sont plus éloignés et / ou séparés de la zone d'implantation par des zones agricoles.

Aucune habitation et aucune zone à destination d'habitation définie dans les documents et projets d'urbanisme des communes autour du projet ne se situe à moins de 500 mètres de l'installation.

Les distances minimales de chaque éolienne vis-à-vis des habitations les plus proches sont données dans le tableau ci-dessous :

Eolienne	Commune de l'habitation	Direction de l'habitation	Distance à l'éolienne la plus proche (m)
E1	Chepoix	Sud-est	589
E2	Chepoix	Sud-est	1079
E3	Chepoix	Sud	703
E4	Chepoix	Sud-est	1083

Tableau 3. Distances vis-à-vis des habitations les plus proches

Carte 2 - Distance des éoliennes du projet Les Froids Vents aux habitations

Projet éolien Les Froids Vents

1.3 L'ANALYSE DES RISQUES

1.3.1 Les sources de dangers

Un parc éolien est soumis aux risques naturels par les dimensions imposantes de l'ouvrage mais également aux risques de défaillance d'équipements constituants l'éolienne.

Les risques naturels sont susceptibles de constituer des agresseurs potentiels et sont donc pris en compte dans l'analyse préliminaire des risques :

- Sismicité;
- Mouvements de terrain (Aléas « glissement de terrain », Cavités souterraines, Aléa « retrait-gonflement des argiles ») ;
- Foudre;
- Vents violents;
- Incendies de forêts et de cultures ;
- Inondations.

Des ouvrages (voies de communications par exemple) ou des installations classées à proximité des aérogénérateurs, peuvent présenter également un risque externe.

Les dangers potentiels relatifs au fonctionnement des éoliennes sont recensés dans le tableau suivant :

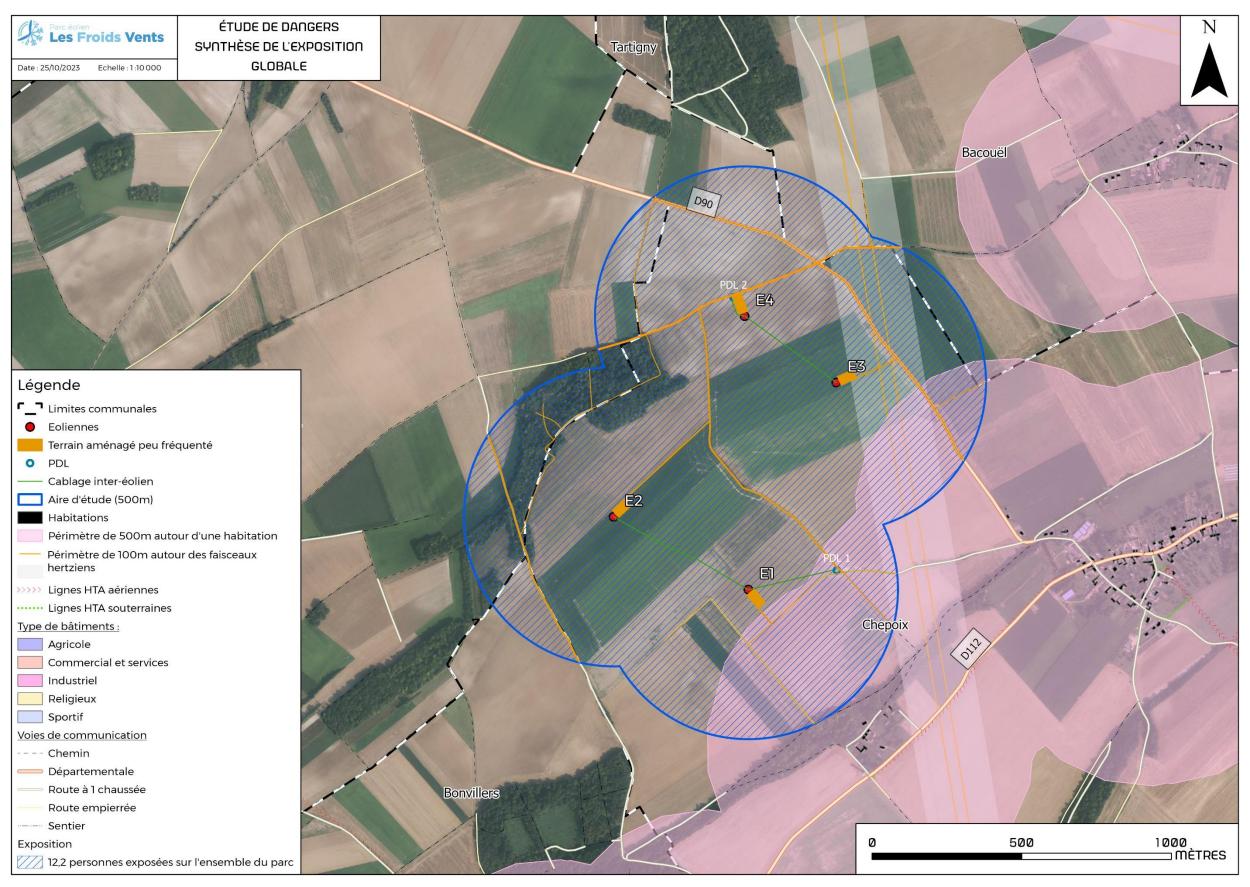
Installation ou système	Fonction	Phénomène redouté	Danger potentiel
Système de transmission	Transmission d'énergie mécanique	Survitesse	Echauffement des pièces mécaniques et flux thermique
Pale	Prise au vent	Bris de pale ou chute de pale	Energie cinétique d'éléments de pales
Aérogénérateur	Production d'énergie électrique à partir d'énergie éolienne	Effondrement	Energie cinétique de chute
Poste de livraison, intérieur de l'aérogénérateur	Réseau électrique	Court-circuit interne	Arc électrique
Nacelle	Protection des équipements destinés à la production électrique	Chute d'éléments	Energie cinétique de projection
	Protection des équipements destinés à la production électrique	Chute de nacelle	Energie cinétique de chute
Rotor	Transformation de l'énergie éolienne en énergie mécanique	Projection d'objets	Energie cinétique des objets

Les produits identifiés dans le cadre du parc éolien sont utilisés pour le bon fonctionnement des éoliennes, leur maintenance et leur entretien :

- Produits nécessaires au bon fonctionnement des installations (graisses et huiles de transmission, huiles hydrauliques pour systèmes de freinage...), qui une fois usagés sont traités en tant que déchets industriels spéciaux;
- Produits de nettoyage et d'entretien des installations (solvants, dégraissants, nettoyants...) et les déchets industriels banals associés (pièces usagées non souillées, cartons d'emballage...).

Conformément à l'article 16 de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation, aucun produit inflammable ou combustible n'est stocké dans les aérogénérateurs ou les postes de livraison.

Le tableau ci-dessous synthétise les principales agressions externes liées aux activités humaines :


Infrastructure	Fonction	Evénement redouté	Danger potentiel	Périmètre	Distanc	éolie	pport au r ennes ètres)	nât des
					E1	E2	E3	E4
RD 90	Transport	Accident entraînant la sortie de voie d'un ou plusieurs véhicules	Energie cinétique des véhicules et flux thermiques	200 m	/	/	205	/
Aérodrome	Transport aérien	Chute d'aéronef	Energie cinétique de l'aéronef, flux thermique	2000 m	/	/	/	/
Ligne THT	Transport d'électricité	Rupture de câble	Arc électrique, surtensions	200 m	/	/	/	/
Canalisation de gaz	Transport de gaz	Rupture de canalisation	Flux thermique	200 m	/	/	/	/
Autres aérogénérateurs	Production d'électricité	Accident générant des projections d'éléments	Energie cinétique des éléments projetés	500m	/	/	/	/

Il est à noter qu'aucune agression externe est situé dans le périmètre de la zone d'effet des différents scénarii (cf. carte des enjeux ci-dessous).

Par ailleurs, RP GLOBAL précise que son projet éolien est conforme à la norme IEC 61400-1 qui fixe les prescriptions relatives à la sécurité de la structure de chaque éolienne, de ses parties mécaniques et électriques et de son système de commande.

Carte 3 - Carte des enjeux du parc éolien Les Froids Vents

Dossier de demande d'autorisation environnementale

Page 12 sur 131

1.3.2 Principe de l'analyse des risques

L'analyse des risques est l'élément central de l'étude de dangers. L'objet de l'analyse des risques est de recenser de manière exhaustive tous les scénarios d'accidents pouvant mener à des situations accidentelles : un accident suppose en effet une succession d'événements qui conduisent à un phénomène dangereux.

L'analyse des risques évalue également l'efficacité des mesures permettant de s'opposer à l'apparition de phénomènes dangereux et identifie les mesures les plus importantes pour la maîtrise des risques.

L'analyse des risques permet également d'évaluer le risque lié à chaque scénario accidentel identifié.

1.3.3 L'évaluation des risques

Le risque est défini comme la probabilité d'occurrence d'un accident, combinée à la gravité de ses conséquences. Cette définition permet de distinguer la notion de risque de la notion de danger.

Le danger est en effet une propriété intrinsèque d'un produit, d'un équipement, d'un procédé etc ... A titre d'exemple simple, le gaz naturel est dangereux car il est inflammable.

La notion de risque permet en revanche d'intégrer les précautions prises vis-à-vis du danger. Le gaz naturel est en effet une substance certes dangereuse, mais les risques que suppose son utilisation peuvent être maîtrisés en prenant des précautions : la surveillance des canalisations réduit considérablement la probabilité de fuite et donc d'apparition de phénomènes dangereux.

1.3.4 L'évaluation de la probabilité

La probabilité d'un accident est assimilée à la fréquence à laquelle il peut se produire. La réglementation en vigueur¹ indique une grille permettant de situer le niveau de probabilité d'un accident : cette grille présente 5 niveaux allant de « *Possible mais extrêmement peu probable* » (niveau E) à « *Courant* » (niveau A).

Ces niveaux de probabilité peuvent également être quantifiés au moyen de fréquences. Par exemple, le niveau E correspond à des fréquences inférieures à 10⁻⁵/an, c'est-à-dire à des événements se produisant moins d'une fois tous les 100 000 ans.

Echelle quantitative Niveaux Echelle qualitative (probabilité annuelle) Courant Se produit sur le site considéré et/ou peut se produire à plusieurs $P > 10^{-2}$ Α reprises pendant la durée de vie des installations, malgré d'éventuelles mesures correctives. Probable $10^{-3} < P \le 10^{-2}$ В S'est produit et/ou peut se produire pendant la durée de vie des installations. Improbable Evénement similaire déjà rencontré dans le secteur d'activité ou $10^{-4} < P \le 10^{-3}$ dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité. Rare 10⁻⁵< P ≤ 10⁻⁴ D S'est déjà produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité. Extrêmement rare Ε P ≤ 10⁻⁵ Possible mais non rencontré au niveau mondial. N'est pas impossible au vu des connaissances actuelles.

RNT Etude de dangers - Version finale - 5 janvier 2024

¹ Circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003

1.3.5 L'évaluation de la gravité

Le nombre de personnes exposées² dans les limites d'étendue des seuils d'effets définit le niveau de gravité.

Par analogie aux niveaux de gravité retenus dans l'annexe III de l'arrêté du 29 septembre 2005, les seuils de gravité sont déterminés en fonction du nombre équivalent de personnes permanentes dans chacune des zones d'effet définies dans le paragraphe précédent.

Intensité	Zone d'effet d'un	Zone d'effet d'un	Zone d'effet d'un
	événement accidentel	événement accidentel	événement accidentel
Gravité	engendrant une exposition	engendrant une exposition	engendrant une exposition
	très forte	forte	modérée
« Désastreux »	Plus de 10	Plus de 100	Plus de 1000
	personnes exposées	personnes exposées	personnes exposées
« Catastrophique »	Moins de 10	Entre 10 et 100	Entre 100 et 1000
	personnes exposées	personnes exposées	personnes exposées
« Important »	Au plus 1 personne exposée	Entre 1 et 10 personnes exposées	Entre 10 et 100 personnes exposées
« Sérieux »	Aucune personne exposée	Au plus 1 personne exposée	Moins de 10 personnes exposées
« Modéré »	Pas de zone de létalité en dehors de l'établissement	Pas de zone de létalité en dehors de l'établissement	Présence humaine exposée inférieure à « une personne »

Ainsi, pour chaque phénomène dangereux identifié, l'ensemble des personnes présentes dans la zone d'effet correspondante sera comptabilisé. Dans chaque zone couverte par les effets d'un phénomène dangereux issu de l'analyse de risque, les ensembles homogènes (Établissement Recevant du Public, zones habitées, zones industrielles, commerces, voies de circulation, terrains non bâtis...) seront identifiés et la surface (pour les terrains non bâtis, les zones d'habitat) et/ou la longueur (pour les voies de circulation) de cette zone d'effets sera déterminée.

Le niveau de gravité est donc fonction d'une intensité traduisant un degré d'exposition. Ce dernier est défini s le rapport entre la surface effectivement atteinte par les effets d'un évènement redouté et la surface de la zone potentiellement exposée à ces effets.

Intensité	Degré d'exposition
exposition très forte	Supérieur à 5 %
exposition forte	Compris entre 1 % et 5 %
exposition modérée	Inférieur à 1 %

1.3.6 Combinaison de la probabilité et de la gravité

Pour conclure à l'acceptabilité, la matrice de criticité ci-dessous, adaptée de la circulaire du 29 septembre 2005 reprise dans la circulaire du 10 mai 2010 mentionnée ci-dessus sera utilisée.

Conséquence	Classe de probabilité					
	E	D	В	Α		
Désastreux						
Catastrophique						
Important						
Sérieux						
Modéré						

Légende de la matrice :

Niveau de risque	Code Couleur	Acceptabilité
Risque très faible		Acceptable
Risque faible		Acceptable
Risque important		Non acceptable

Ceci permet de traduire le niveau de risques selon trois catégories :

- **Risque très faible** (vert) : niveau auquel les risques identifiés sont acceptables au regard de leur rapport intensité/probabilité ;
- **Risque faible** (jaune) : niveau auquel les risques identifiés sont acceptables par la mise en œuvre de mesures de sécurité ;
- Risque important (rouge) : niveau auquel les risques identifiés sont non acceptables.

L'acceptabilité résulte du croisement entre probabilité d'occurrence et gravité de l'accident.

cinétique de ce dernier et de la propagation de ses effets le permettent.

RNT Etude de dangers - Version finale - 5 janvier 2024

Page 13 sur 131

² Personnes exposées : personnes exposées à l'extérieur des limites du site, en tenant compte le cas échéant des mesures constructives visant à protéger les personnes contre certains effets et la possibilité de mise à l'abri des personnes en cas d'occurrence d'un phénomène dangereux si la

1.4 L'ANALYSE PRÉLIMINAIRE DES RISQUES

1.4.1 Analyse du retour d'expérience

Il n'existe actuellement aucune base de données officielle recensant l'accidentologie dans la filière éolienne. Néanmoins, il a été possible d'analyser les informations collectées en France et dans le monde par plusieurs organismes divers (associations, organisations professionnelles, littératures spécialisées, etc.). Ces bases de données sont cependant très différentes tant en termes de structuration des données qu'en termes de détails de l'information.

Les retours d'expérience de la filière éolienne française et internationale permettent d'identifier les principaux accidents suivants :

- Effondrements de l'éolienne ;
- Ruptures de pales ;
- Chutes de pales et d'éléments de l'éolienne ;
- Incendie.

1.4.2 Analyse préliminaire des risques

Une analyse préliminaire des risques sous forme d'un tableau générique est réalisée permettant d'identifier de manière représentative les scénarios d'accident pouvant potentiellement se produire :

- Scénarios relatifs aux risques liés à la glace ;
- Scénarios relatifs aux risques d'incendie ;
- Scénarios relatifs aux risques de fuites ;
- Scénarios relatifs aux risques de chute d'éléments;
- Scénarios relatifs aux risques de projection de pales ou de fragments de pales;
- Scénarios relatifs aux risques d'effondrement des éoliennes.

L'analyse est réalisée de la manière suivante :

- Description des causes et de leur séquençage ;
- Description des événements redoutés centraux qui marquent la partie incontrôlée de la séquence d'accident :
- Description des *fonctions de sécurité* permettant de prévenir l'événement redouté central ou de limiter, les effets du phénomène dangereux ;
- Description des phénomènes dangereux dont les effets sur les personnes sont à l'origine d'un accident;
- Evaluation préliminaire de la zone d'effets attendue de ces événements.

1.4.3 Mesures de maîtrise des risques

Afin de limiter les risques d'accidents ou d'incidents liés aux activités du parc éolien, les constructeurs d'aérogénérateurs ont prévus différentes mesures :

- Systèmes de sécurité contre la survitesse (freins aérodynamiques passifs et actifs, surveillance de la rotation, détection de la vitesse du vent);
- Systèmes de sécurité contre le risque de vents forts (coupure de l'éolienne en cas de détection de vents forts) ;
- Systèmes de sécurité contre le risque électrique (organes de coupure électrique, isolement, mise à la terre) :
- Systèmes contre l'échauffement des pièces mécaniques (détecteurs de température, systèmes de refroidissement);
- Systèmes de sécurité contre le risque de foudre (installation anti-foudre comprenant un paratonnerre sur la nacelle et les pales) ;
- Systèmes de sécurité contre le risque d'incendie (détection de fumée, de température, alarme du centre de contrôle et intervention des moyens de secours) ;
- Systèmes de sécurité contre le risque de fuite de liquides (détecteur de niveau de liquide, rétention formée par la structure de l'éolienne) ;
- Systèmes de sécurité contre la formation du givre (basés sur la détection et arrêt de l'éolienne, affichage du risque pour les promeneurs) ;
- Systèmes de sécurité contre le risque d'effondrement de l'éolienne (conception des fondations basées sur des normes et de l'ingénierie, conception des éoliennes adaptée à la force du vent);
- Systèmes de sécurité contre le risque d'erreurs de maintenance (formation du personnel, manuel de maintenance).

1.4.4 Conclusion de l'analyse préliminaire

Dans le cadre de l'analyse préliminaire des risques génériques des parcs éoliens, trois catégories de scénarios sont exclues de l'étude détaillée, en raison de leur faible intensité : incendie d'un poste de livraison, incendie des éoliennes et infiltration de liquides dans le sol.

Les scénarios qui doivent faire l'objet d'une étude détaillée sont les suivants :

- Effondrement de l'éolienne (S1);
- Chute d'éléments de l'éolienne (S2);
- Chute de glace (S3);
- Projection de tout ou une partie de pale (S4);
- Projection de glace (\$5).

Projet éolien Les Froids Vents

Dossier de demande d'autorisation environnementale

1.5 L'ÉTUDE DÉTAILLEE DES RISQUES

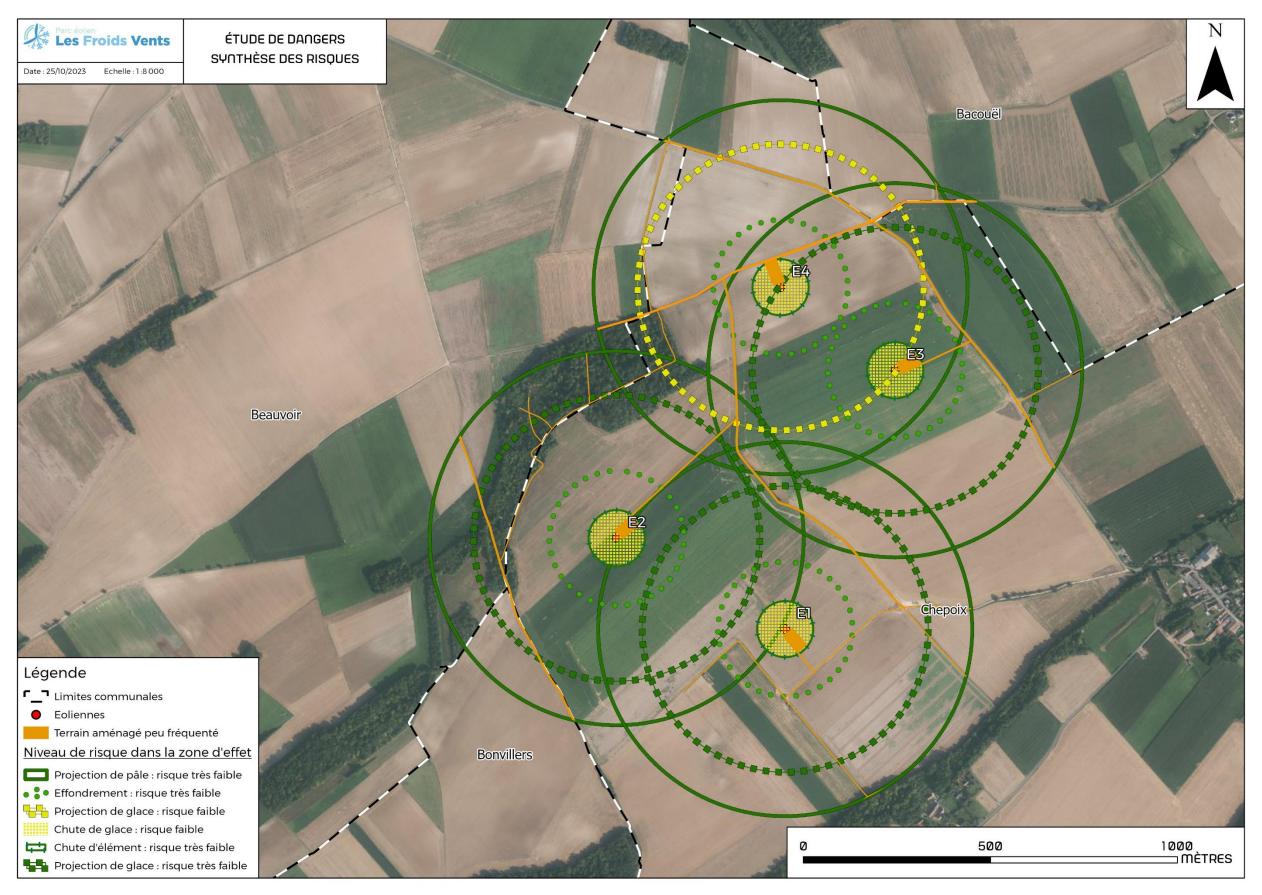
1.5.1 Objectifs de l'analyse détaillée des risques

L'Étude Détaillée des Risques poursuit et complète l'Analyse Préliminaire des Risques pour les accidents considérés comme étant potentiellement les plus importants car sortant des limites du site.

Les objectifs de l'Étude Détaillée des Risques sont les suivants :

- Identifier et étudier les combinaisons de cause conduisant aux situations dangereuses;
- Identifier les mesures de maîtrise des risques pouvant intervenir dans le déroulement des scénarios d'accident;
- Evaluer de manière quantitative la probabilité d'occurrence des différents événements, de la situation dangereuse et des différents phénomènes dangereux dont elle peut être à l'origine ;
- Modéliser les effets des différents phénomènes physiques causés par la situation dangereuse et analyser l'exposition des éléments vulnérables présents dans les zones de projection (les seuls effets considérés à la suite d'un scénario de projection sont les effets létaux sur une ou plusieurs personnes);
- Proposer des mesures d'amélioration complémentaires si besoin est, afin de réduire le risque résiduel.

1.5.2 Les résultats de l'Étude Détaillée des Risques


L'Étude Détaillée des Risques a permis de vérifier que les mesures de sécurité envisagées sur le site sont suffisantes pour réduire le niveau de risque des accidents et exclure tous les accidents d'une case « NON » de la matrice de MMR (Matrice de Mesures des Risques : cf. paragraphe ci-dessous).

1.5.3 Carte des risques avec zones de risques et vulnérabilités identifiées

La carte de synthèse des risques pour le parc éolien Les Froids Vents est située sur la page suivante.

Carte 4 - Carte de synthèse des risques

1.6 CONCLUSIONS DE L'ANALYSE DES RISOUES

Il apparaît au regard de la matrice ainsi complétée que :

- Aucun accident n'apparaît dans les cases rouges de la matrice ;
- Les accidents liés aux chutes de glaces apparaissent dans les cases jaunes de la matrice (risque faible acceptable);
- Les accidents liés à la projection de pales, à l'effondrement de l'éolienne, à la chute d'éléments de l'éolienne ou à la projection de glace apparaissent dans les cases vertes de la matrice (risque très faible acceptable).

Ces incidents constituent un risque acceptable pour les personnes exposées.

Conséquence	Classe de probabilité					
	E	D	С	В	Α	
Désastreux						
Catastrophique						
Important						
Sérieux		S4 (E3-E4)		S5 (E4)		
Modéré		S1 S4 (E1-E2)	S2	S5 (E1-E2-E3)	\$3	

Légende de la matrice :

Niveau de risque	Code Couleur	Acceptabilité
Risque très faible		Acceptable
Risque faible		Acceptable
Risque important		Non acceptable

Rappel des Scénarii:

- S1 : Effondrement de l'éolienne ;
- S2 : Chute d'éléments de l'éolienne ;
- S3 : Chute de glace ;
- S4: Projection de pales;
- S5: Projection de glace.

Ces scénarii regroupent plusieurs causes et séquences d'accidents. Une cotation en intensité, probabilité, gravité et cinétique de ces événements ont permis de caractériser les risques pour toutes les séquences d'accidents. Une recherche d'enjeux humains vulnérables a été réalisée dans chaque périmètre d'effet des cinq scénarii d'accidents, permettant de repérer les interactions possibles entre les risques et les enjeux.

La cotation en gravité et probabilité pour chacune des éoliennes a permis de classer le risque de chaque scénario selon la grille de criticité employée et inspirée de la circulaire du 10 mai 2010.

Après analyse détaillée des risques, selon la méthodologie de la circulaire du 10 mai 2010, il apparait qu'aucun scénario étudié ne ressort comme inacceptable.

Les mesures d'amélioration permettant la réduction des risques ainsi que les études complémentaires présentes dans l'étude d'impact répondent de façon efficace aux principaux scénarios d'accident majeur.

L'exploitant a mis en œuvre des mesures adaptées pour maîtriser les risques :

- L'implantation permet d'assurer un éloignement suffisant des zones fréquentées ;
- L'exploitant respecte les prescriptions générales de l'arrêté du 26 août 2011;
- Les systèmes de sécurité des aérogénérateurs sont adaptés aux risques.

Les systèmes de sécurité des aérogénérateurs seront maintenus dans le temps et testés régulièrement en conformité avec la section 4 de l'arrêté du 26 août 2011.

Le projet permet d'atteindre, dans des conditions économiquement acceptables, un niveau de risque aussi bas que possible, compte tenu de l'état des connaissances et des pratiques actuelles.

2 PREAMBULE ETUDE DE DANGER

2.1 OBJECTIFS DE L'ETUDE DE DANGERS

La présente étude de dangers a pour objet de rendre compte de l'examen effectué par la société RP GLOBAL pour caractériser, analyser, évaluer, prévenir et réduire les risques des éoliennes du parc éolien Les Froids Vents autant que technologiquement réalisable et économiquement acceptable, que leurs causes soient intrinsèques aux substances ou matières utilisées, liées aux procédés mis en œuvre ou dues à la proximité d'autres risques d'origine interne ou externe à l'installation.

Cette étude est proportionnée aux risques présentés par les éoliennes en question.

Le choix de la méthode d'analyse utilisée et la justification des mesures de prévention, de protection et d'intervention sont adaptés à la nature et la complexité des installations et de leurs risques.

Elle précise l'ensemble des mesures de maîtrise des risques mises en œuvre sur le parc éolien Les Froids Vents, qui réduisent le risque à l'intérieur et à l'extérieur des éoliennes à un niveau jugé acceptable par l'exploitant.

Ainsi, cette étude permet une approche rationnelle et objective des risques encourus par les personnes ou l'environnement, en satisfaisant les principaux objectifs suivants :

- Améliorer la réflexion sur la sécurité sur site afin de réduire les risques et optimiser la politique de prévention ;
- Favoriser le dialogue technique avec les autorités d'inspection pour la prise en compte des parades techniques et organisationnelles dans l'arrêté d'autorisation ;
- Informer le public dans la meilleure transparence possible en lui fournissant des éléments d'appréciation clairs sur les risques.

2.2 CONTEXTE LEGISLATIF ET REGLEMENTAIRE

Les objectifs et le contenu de l'étude de dangers sont définis dans le Code de l'environnement. L'article L. 181-1 du Code de l'environnement précise que le régime de l'autorisation environnementale instauré par l'ordonnance n° 2017-80 et les décrets n° 2017-81 et 2017-82 du 26 janvier 2017 est applicable aux installations classées pour la protection de l'environnement.

Aux termes de l'article L. 515-44 du Code de l'environnement, les parcs éoliens dont l'une des éoliennes au moins dispose d'un mât d'une hauteur supérieure à 50 mètres sont soumis à autorisation au titre des installations classées pour la protection de l'environnement et l'article D. 181-15-2, 10° du même Code précise que lorsque l'autorisation environnementale concerne une installation classée pour la protection de l'environnement, le dossier de demande est complété par une étude de dangers.

Selon l'article L. 181-25 du Code de l'environnement, l'étude de dangers expose les risques que peut présenter l'installation pour les intérêts visés à l'article L. 511-1 du même Code <u>en cas d'accident</u>, que la cause soit interne ou externe à l'installation. Les impacts de l'installation sur ces intérêts en fonctionnement normal sont traités dans l'étude d'impact sur l'environnement.

Article L. 181-25 du Code de l'environnement :

Le demandeur fournit une étude de dangers qui précise les risques auxquels l'installation peut exposer, directement ou indirectement, les intérêts mentionnés à l'article L. 511-1 en cas d'accident, que la cause soit interne ou externe à l'installation.

Le contenu de l'étude de dangers doit être en relation avec l'importance des risques engendrés par l'installation. En tant que de besoin, cette étude donne lieu à une analyse de risques qui prend en compte la probabilité d'occurrence, la cinétique et la gravité des accidents potentiels selon une méthodologie qu'elle explicite.

Elle définit et justifie les mesures propres à réduire la probabilité et les effets de ces accidents.

Les intérêts visés à l'article L. 511-1 du Code de l'environnement sont la commodité du voisinage, la santé, la sécurité, la salubrité publique, l'agriculture, la protection de la nature, de l'environnement et des paysages, l'utilisation économe des sols naturels, agricoles ou forestiers, l'utilisation rationnelle de l'énergie, la conservation des sites et des monuments ainsi que des éléments du patrimoine archéologique.

Cependant, il convient de noter que l'arrêté du 29 septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classés soumises à autorisation impose une évaluation des accidents majeurs sur les personnes uniquement et non sur la totalité des enjeux identifiés dans l'article L. 511-1.

En cohérence avec cette réglementation et dans le but d'adopter une démarche proportionnée, l'évaluation des accidents majeurs dans l'étude de dangers s'intéressera prioritairement aux dommages sur les personnes. Pour les parcs éoliens, les atteintes à l'environnement (notamment au paysage), l'impact sur le fonctionnement des radars et les problématiques liées à la circulation aérienne feront l'objet d'une évaluation détaillée au sein de l'étude d'impact.

Ainsi, l'étude de dangers a donc pour objectif de <u>démontrer la maîtrise du risque par l'exploitant</u>. Elle comporte une analyse des risques qui présente les différents scénarios d'accidents majeurs susceptibles d'intervenir.

Ces scénarios sont caractérisés en fonction de leur probabilité d'occurrence, de leur cinétique, de leur intensité et de la gravité des accidents potentiels. Elle justifie que le projet permet d'atteindre, dans des conditions économiquement acceptables, un niveau de risque aussi bas que possible, compte tenu de l'état des connaissances et des pratiques et de la vulnérabilité de l'environnement de l'installation.

Selon le <u>principe de proportionnalité</u>, le contenu de l'étude de dangers doit être en relation avec l'importance des risques engendrés par l'installation, compte tenu de son environnement et de sa vulnérabilité. Ce contenu est défini par l'article D. 181-15-2, III du Code de l'environnement.

Article D. 181-15-2 du Code de l'environnement :

III. - L'étude de dangers justifie que le projet permet d'atteindre, dans des conditions économiquement acceptables, un niveau de risque aussi bas que possible, compte tenu de l'état des connaissances et des pratiques et de la vulnérabilité de l'environnement de l'installation.

Le contenu de l'étude de dangers doit être en relation avec l'importance des risques engendrés par l'installation, compte tenu de son environnement et de la vulnérabilité des intérêts mentionnés à l'article L. 181-3.

Cette étude précise, notamment, la nature et l'organisation des moyens de secours dont le pétitionnaire dispose ou dont il s'est assuré le concours en vue de combattre les effets d'un éventuel sinistre. Dans le cas des installations figurant sur la liste prévue à l'article L. 515-36, le pétitionnaire doit fournir les éléments indispensables pour l'élaboration par les autorités publiques d'un plan particulier d'intervention.

L'étude comporte, notamment, un résumé non technique explicitant la probabilité et la cinétique des accidents potentiels, ainsi qu'une cartographie agrégée par type d'effet des zones de risques significatifs.

Le ministre chargé des installations classées peut préciser les critères techniques et méthodologiques à prendre en compte pour l'établissement de l'étude de dangers, par arrêté pris dans les formes prévues à l'article L. 512-5.

Pour certaines catégories d'installations impliquant l'utilisation, la fabrication ou le stockage de substances dangereuses, le ministre chargé des installations classées peut préciser, par arrêté pris en application de l'article L. 512-5, le contenu de l'étude de dangers portant, notamment, sur les mesures d'organisation et de gestion propres à réduire la probabilité et les effets d'un accident majeur.

L'arrêté du 29 septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation (NOR: DEVP0540371A) fixe la détermination des seuils réglementaires pour apprécier l'intensité des effets physiques des phénomènes, la gravité des accidents et les classes de probabilité de ces phénomènes.

Enfin la circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003 (NOR: DEVP1013761C) énonce des règles de méthodologie applicables pour l'élaboration des études de dangers.

2.3 NOMENCLATURE DES INSTALLATIONS CLASSEES

Conformément à l'article R. 511-9 du Code de l'environnement, modifié par le décret n° 2011-984 du 23 août 2011, les parcs éoliens sont soumis à la rubrique 2980 de la nomenclature des installations classées :

Rubriq	e Libellé de l'installation	Classement	Rayon d'affichage
2980	Installation terrestre de production à partir de l'énergie mécanique du vent et regroupant un ou plusieurs aérogénérateurs : 1. Comprenant au moins un aérogénérateur dont le mât a une hauteur supérieure ou égale à 50 m : autorisation 2. Comprenant uniquement des aérogénérateurs dont le mât a une hauteur inférieure à 50 m et au moins un aérogénérateur dont le mât a une hauteur maximale supérieure ou égale à 12 m et pour une puissance totale installée : a) supérieure ou égale à 20 MW : Autorisation b) inférieure à 20 MW : Déclaration	A : Autorisation	6 km

Les éoliennes du parc éolien Les Froids Vents présentent au moins un aérogénérateur dont le mât a une hauteur supérieure ou égale à 50 m : cette installation est donc soumise à autorisation (A) au titre des installations classées pour la protection de l'environnement et doit présenter une étude de dangers au sein de sa demande d'autorisation d'exploiter.

L'étude de danger est une des pièces constitutives du Dossier de Demande d'Autorisation Environnementale.

3 INFORMATIONS GENERALES CONCERNANT L'INSTALLATION

3.1 RENSEIGNEMENTS ADMINISTRATIFS

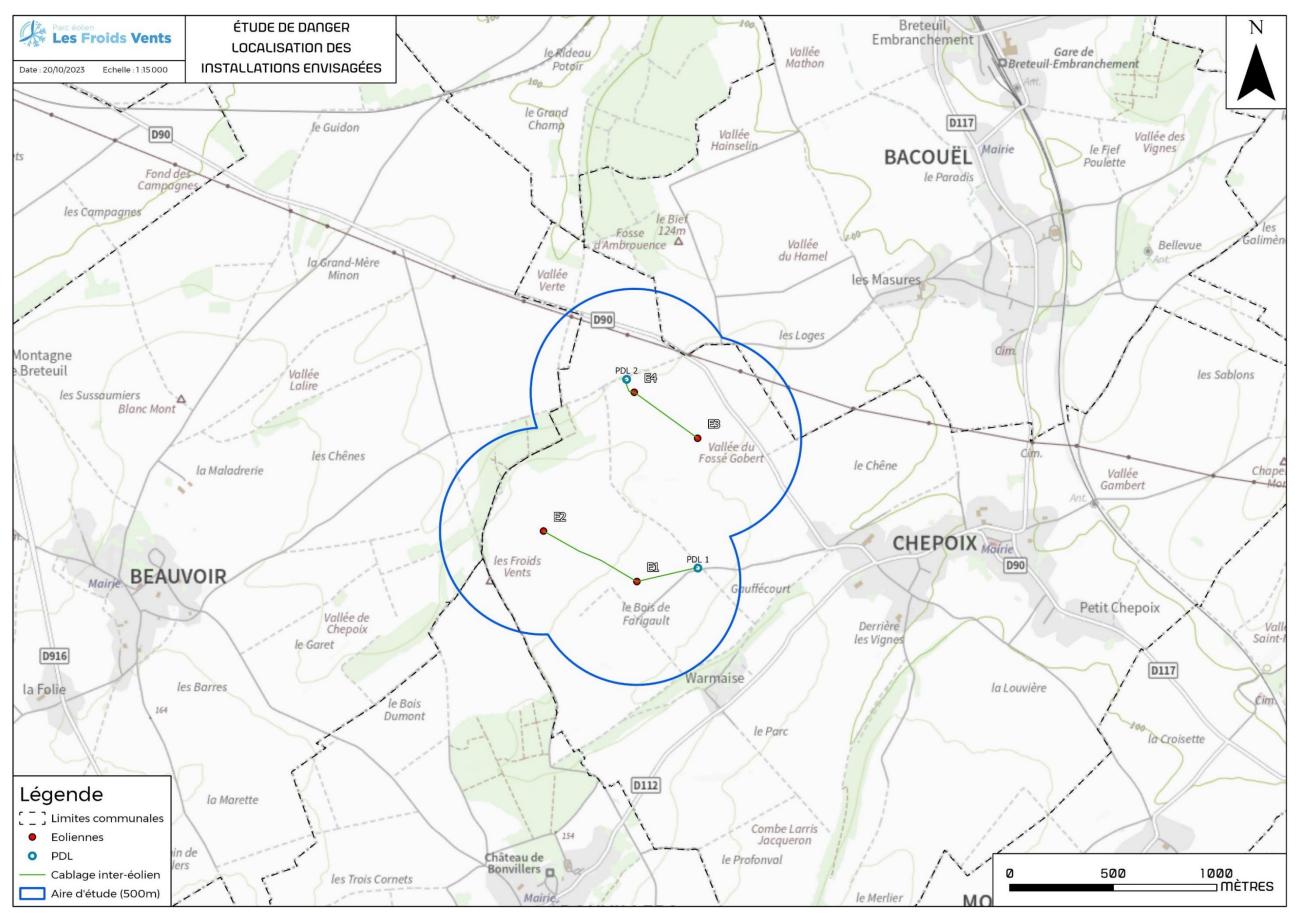
Les premières études de préfaisabilité portant sur ce projet éolien sur la commune de Chepoix ont été entamées dès 2018 par la société RP Global, développeur travaillant principalement dans la région Hauts de France.

La société d'exploitation la SARL Les Froids Vents exploitera l'ensemble des installations du parc éolien.

Société projet, exploitante du parc éolien	Les Froids Vents	
Statut juridique	Société à responsabilité limitée	
Capital	20 000 Euros	
Code APE	3511 Z	
Registre du Commerce et des Sociétés	90153640900013	
Adresse du siège social	213 boulevard de Turin 59777 LILLE	
Nom et qualité du signataire de la demande	Pierre MULLER en qualité de Gérant	
Nom et coordonnées de la personne qui a suivi l'affaire	Alban GODFRIND Chef de projet a.godfrind@rp-global.com	

Cette étude a été mise à jour par Claire Le Goff, Chargée d'études ICPE & réglementaires au sein de RP Global France, porteur du projet.

3.2 CONTEXTE DE L'ETUDE ET LOCALISATION DU SITE


Le projet consiste en l'élaboration d'un parc éolien situé sur la commune de Chepoix. Cette commune fait partie de la Communauté de Communes de l'Oise-Picardie, dans le département de l'Oise (60).

Le parc éolien est composé de 4 aérogénérateurs et de 2 postes de livraison.

Les cartes de cette étude de dangers sont susceptibles de posséder quelques imprécisions dans la mesure où les fonds de cartes IGN présentent une précision affichée de l'ordre de la dizaine de mètres (pixellisation de l'image, précision du géoréférencement...).

Carte 5 - Localisation des installations envisagées

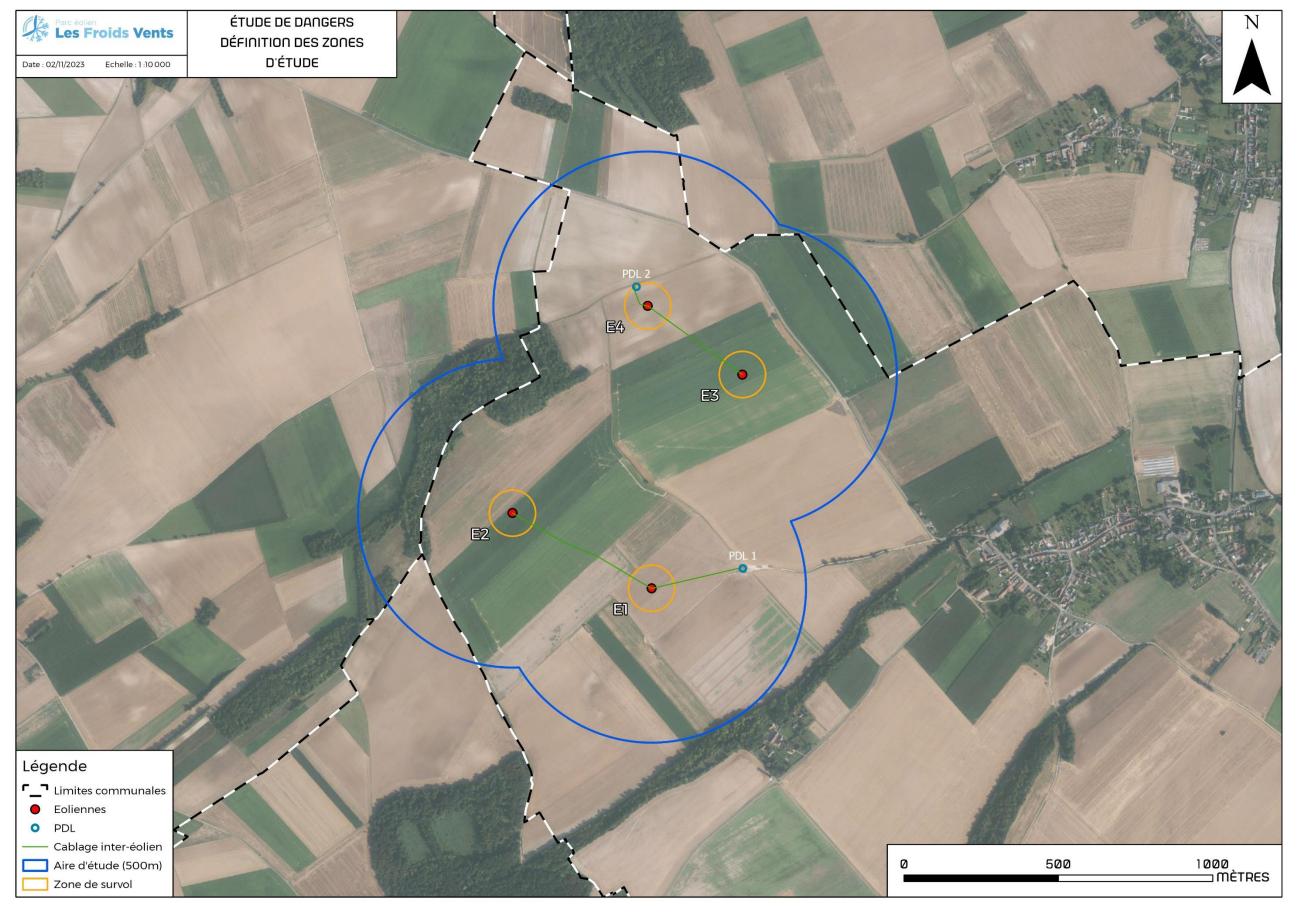
Projet éolien Les Froids Vents

Dossier de demande d'autorisation environnementale

3.3 DEFINITION DE L'AIRE D'ETUDE

Compte tenu des spécificités de l'organisation spatiale d'un parc éolien, composé de plusieurs éléments disjoints, la zone sur laquelle porte l'étude de dangers est constituée d'une aire d'étude par éolienne.

Chaque aire d'étude correspond à l'ensemble des points situés à une distance inférieure ou égale à 500 m à partir de l'emprise du mât de l'aérogénérateur. Cette distance équivaut à la distance d'effet retenue pour les phénomènes de projection, telle que définie au paragraphe 8.2.4.


La zone d'étude n'intègre pas les environs du poste de livraison, qui seront néanmoins représentés sur la carte. Les expertises réalisées dans le cadre de la présente étude ont en effet montré l'absence d'effet à l'extérieur du poste de livraison pour chacun des phénomènes dangereux potentiels pouvant l'affecter.

L'aire d'étude (périmètre de 500 m autour des éoliennes) se situe donc sur les communes suivantes :

- Chepoix;
- Beauvoir;
- Bacouël;
- Bonvillers.

Carte 6 - Définition des zones d'étude autour de chaque installation du projet

4 DESCRIPTION DE L'ENVIRONNEMENT DE L'INSTALLATION

Ce chapitre a pour objectif de décrire l'environnement dans la zone d'étude de l'installation, afin d'identifier les principaux intérêts à protéger (enjeux) et les facteurs de risque que peut représenter l'environnement vis-àvis de l'installation (agresseurs potentiels).

4.1 ENVIRONNEMENT HUMAIN

4.1.1 Zones urbanisées

L'étude du milieu humain a été réalisée au sein des 4 communes suivantes :

Commune	Code INSEE	Code Postal	Nb hab (INSEE 2020)	Superficie (km²)	Altitud e (m)	Latitude	Longitude
Chepoix	60146	60120	467	8,86	88-155	19°36'21'' nord	2°22'56'' est
Beauvoir	60058	60120	216	10,27	97-165	49°36'13'' nord	2°19'41'' est
Bacouël	60039	60120	490	5,48	81-149	49'37'10'' nord	2°23'12'' est
Bonvillers	60085	60120	197	5,86	111-161	49°35'28'' nord	2°21'21'' est

Tableau 4. Généralité sur les communes du périmètre immédiat Source : www.insee.fr

La carte 7 expose les zones urbanisées ainsi que les habitations à proximité de la zone d'étude. Les habitations des communes du périmètre immédiat sont de type maison individuelle. Les ménages sont majoritairement propriétaires et leur habitation est leur résidence principale.

Les zones d'habitation les plus proches de la zone se situent à l'ouest du centre-ville de Chepoix. Les autres bourgs sont plus éloignés et / ou séparés de la zone d'implantation par des zones agricoles.

Aucune habitation et aucune zone à destination d'habitation définie dans les documents et projets d'urbanisme des communes autour du projet ne se situe à moins de 500 mètres de l'installation.

Les distances minimales de chaque éolienne vis-à-vis des habitations les plus proches sont données dans le tableau ci-dessous :

Eolienne	Commune de l'habitation	Direction de l'habitation	Distance à l'éolienne la plus proche (m)
E1	Chepoix	Sud-est	589
E2	Chepoix	Sud-est	1079
E3	Chepoix	Sud	703
E4	Chepoix	Sud-est	1083

Tableau 5. Distance vis-à-vis des habitations les plus proches

Ainsi, aucune habitation ne se situe à moins de 500 mètres d'une éolienne.

4.1.2 Etablissements recevant du public

Dans les limites du périmètre d'étude de 500 mètres, aucun établissement recevant du public (ERP) n'est recensé. Les plus proches (de type écoles, mairies ou magasins) se situent au sein des villages alentour, localisés à plus de 1 km des éoliennes.

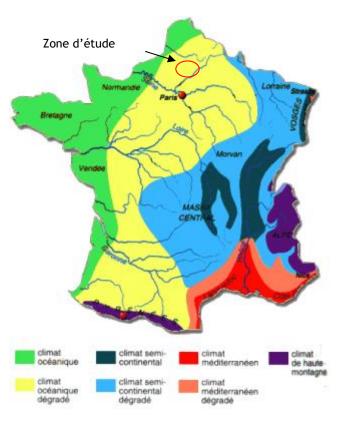
4.1.3 Installations Classées pour la Protection de l'Environnement (ICPE) et installations nucléaires de base

Aucune Installation Classée pour la Protection de l'Environnement (ICPE) n'est recensée dans les limites de la zone d'étude de 500 m autour des installations du projet.

4.1.4 Autres activités

Au sein de la zone d'étude, seules les activités agricoles sont présentes (carte 6).

Carte 7 - Distance aux habitations et aux zones urbanisables



4.2 ENVIRONNEMENT NATUREL

Les paragraphes ci-après sont étudiés dans l'état initial de l'étude d'impact. Nous en reprenons les conclusions.

4.2.1 Contexte climatique

La zone d'étude est sous l'influence d'un climat océanique dégradé. C'est un climat océanique qui peut être influencé par le climat continental (en provenance d'Europe de l'Est). Les pluies sont plus faibles pour ce climat que dans le cadre d'un strict climat océanique. Il est doux et humide mais susceptible de grandes chaleurs ou de grandes périodes sèches.

Carte 8 - Types de climat en France Source : météo France

La station de mesure de Météo France la plus proche du secteur est celle de Beauvais-Tillé située à 30 km de la zone d'étude.

La température moyenne annuelle enregistrée par la station de Beauvais-Tillé est de 14,5 °C. Le mois de janvier est le plus froid (normale mensuelle minimale : 1°C - normale mensuelle maximale : 6,3°C), tandis que les mois de juillet et août sont les plus chauds (normale mensuelle minimale : 12,9°C - normale mensuelle maximale : 23,9°C).

La hauteur moyenne annuelle des précipitations est de 669,4mm.

Au cours de l'année, la pluviométrie oscille entre 45,5 mm en février (mois le moins arrosé) et 68,6 mm en décembre (mois le plus arrosé).

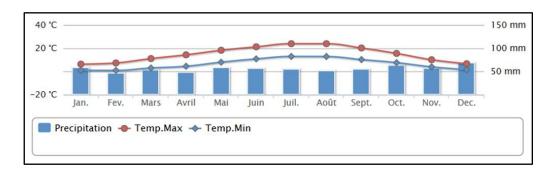


Figure 1 - Diagramme ombrothermique de la station de Beauvais-Tillé
Source : Météo France

Les vents dominants et avec les vitesses les plus importantes proviennent du sud-ouest. En revanche le vent provient peu d'une orientation nord-est.

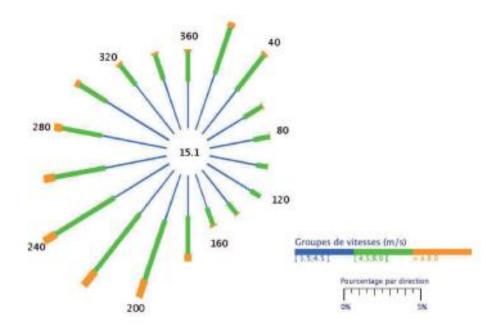


Figure 2 - Distribution de la direction des vents au niveau de la station de Beauvais-Tillé Source : Météo France

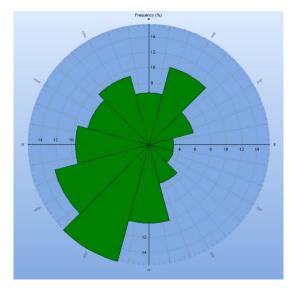
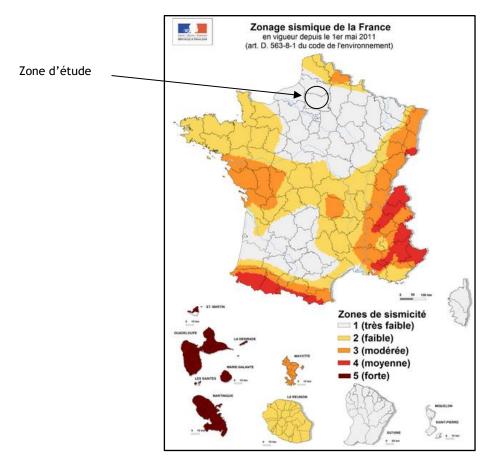


Figure 3 - Distribution de la direction des vents entre juin 2020 et juin 2021 (Source : Mât de mesures de 87m - RP GLOBAL)

4.2.2 Risques naturels

Les 4 communes ne sont pas dotées d'un Document d'Information Communal sur les Risques Majeurs (DICRIM) ou d'un Plan Communal de Sauvegarde (PCS).

4.2.2.1 Risque sismique


Les communes se trouvent uniquement en zone de sismicité de niveau 1.

Les avancées scientifiques et l'arrivée du nouveau code européen de construction parasismique - l'Eurocode 8 (EC8) - ont rendu nécessaire la révision du zonage sismique de 1991 donnant une nouvelle cartographie de la France.

Le contexte a conduit à déduire le zonage sismique de la France non plus d'une approche déterministe, mais d'un calcul probabiliste (calcul de la probabilité qu'un mouvement sismique donné se produise au moins une fois en un endroit et une période de temps donné), la période de retour préconisée par les EC8 étant de 475 ans.

Le zonage sismique français entré en vigueur le 1er mai 2011 est défini dans les décrets n° 2010-1254 et 2010-1255 du 22 octobre 2010, codifiés dans les articles R.563-1 à 8 et D.563-8-1 du Code de l'Environnement. Ce zonage, reposant sur une analyse probabiliste de l'aléa, divise la France en 5 zones de sismicité.

La zone d'étude se situe en zone de sismicité de niveau 1 (très faible).

Carte 9 - Zonage sismique en vigueur depuis le 1er mai 2011

4.2.2.2 Mouvement de terrain

La base de données nationale des mouvements de terrain en France métropolitain recense 1 arrêté de catastrophe naturelle pour inondations, coulées de boue et mouvement de terrain (tempête de décembre 1999) sur les communes de l'aire d'étude (cf. carte 7).

Commune de Chepoix

Inondations, coulées de boue et mouvements de terrain : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF19990168	25/12/1999	29/12/1999	29/12/1999	30/12/1999

- Commune de Beauvoir

Inondations, coulées de boue et mouvements de terrain : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF19990080	25/12/1999	29/12/1999	29/12/1999	30/12/1999

- Commune de Bacouël

Inondations, coulées de boue et mouvements de terrain : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF19990061	25/12/1999	29/12/1999	29/12/1999	30/12/1999

Commune de Bonvillers

Inondations, coulées de boue et mouvements de terrain : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF19990107	25/12/1999	29/12/1999	29/12/1999	30/12/1999

Aucun arrêté de catastrophe naturelle n'a été pris depuis près de 20 ans sur les 4 communes étudiées.

4.2.2.3 Risque d'effondrement

Il existe plusieurs cavités souterraines non minières sur les communes mais nous observons uniquement deux cavités « Indéterminée » identifiées au niveau de l'aire d'étude (cf. carte 10).

4.2.2.4 Aléa retrait-gonflement des argiles

La carte 10 ci-après, extraite de la base de données Retrait-Gonflement des argiles du BRGM présente les aléas sur le secteur d'étude. On constate que la grande majorité de la zone d'étude est en aléa faible avec un aléa faible / moyen sur la commune de Chepoix (ceci s'explique notamment par la présence de couches argileuses).

4.2.2.5 Risque de foudroiement

La densité de foudroiement indique le nombre de coups de foudre par an et par kilomètre carré. Le relevé est effectué à l'aide d'un réseau de stations de détection qui captent les ondes électromagnétiques lors des décharges, les localisent et les comptabilisent.

La densité de foudroiement pour la zone d'étude est faible selon météorage.

Aussi le risque de foudroiement susceptible d'avoir un impact sur le projet est faible.

Projet éolien Les Froids Vents

4.2.2.7 Risque d'inondation

Il n'est pas recensé de zone inondable dans la partie de la zone d'étude située dans le bassin versant de la Somme en raison de la localisation de la zone d'étude sur un plateau.

Ainsi, les communes en étude ne sont pas considérées comme un Territoire à Risque important d'Inondation (TRI) et ne sont pas concernées par un Atlas des Zones Inondables. Il n'y également pas de Plan de Prévention du Risque Inondation en vigueur sur les communes.

Cependant, les 4 communes de l'aire d'étude font l'objet d'un programme de prévention (PAPI).

Nom du PAPI	Aléa	Date de labellisation	 Date de fin de réalisation
80DREAL20150001 -	Inondation - Par remontées de nappes naturelles, Inondation - Par ruissellement et coulée de boue, Inondation - Par une crue à débordement lent de cours d'eau	09/07/2015	

Concernant la vulnérabilité aux eaux souterraines, l'ensemble de l'aire d'étude est en vulnérabilité moyenne des eaux souterraines. Des mesures seront donc à prendre lors de la phase chantier afin de limiter les risques de transfert de pollution vers la nappe.

Sur la zone d'étude, les arrêtés de catastrophes naturelles suivants ont été mises en place (inondations / inondations par remontées de nappe) :

• Commune de Chepoix

<u>Un arrêté de catastrophe naturelle pour inondations, coulées de boue et mouvement de terrain (tempête de décembre 1999)</u>

Inondations, coulées de boue et mouvements de terrain : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF19990168	25/12/1999	29/12/1999	29/12/1999	30/12/1999

Inondations et coulées de boue : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF19870002	19/05/1985	19/05/1985	27/01/1987	14/02/1987

Inondations par remontées de nappe phréatique : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF20010161	08/04/2001	19/04/2001	29/08/2001	26/09/2001

• Commune de Beauvoir

<u>Un arrêté de catastrophe naturelle pour inondations, coulées de boue et mouvement de terrain (tempête de décembre 1999)</u>

Inondations, coulées de boue et mouvements de terrain : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF19990080	25/12/1999	29/12/1999	29/12/1999	30/12/1999

• Commune de Bonvillers

Inondations, coulées de boue et mouvements de terrain : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF19990107	25/12/1999	29/12/1999	29/12/1999	30/12/1999

• Commune de Bacouël

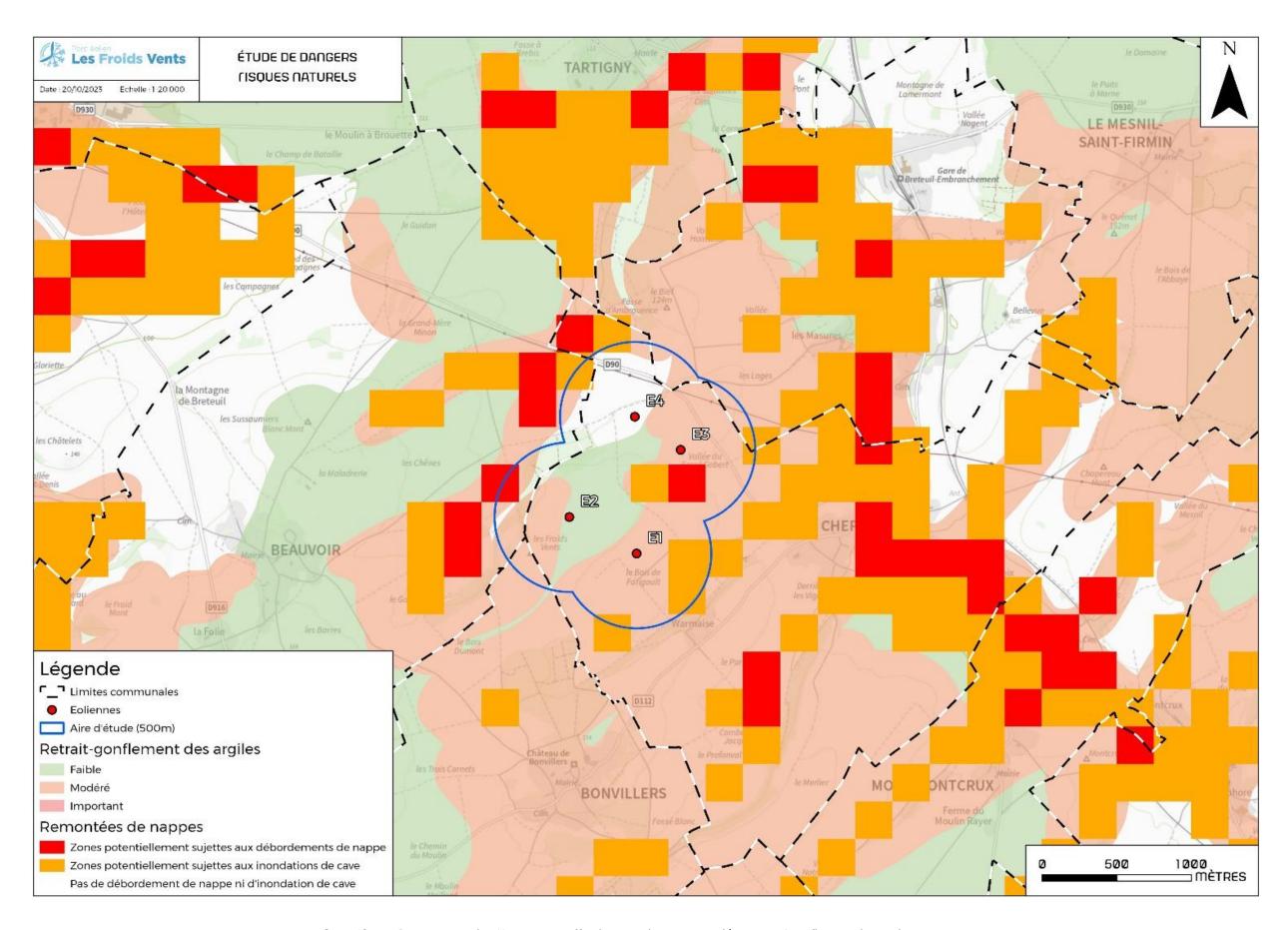
<u>Un arrêté de catastrophe naturelle pour inondations, coulées de boue et mouvement de terrain (tempête de décembre 1999)</u>

Inondations, coulées de boue et mouvements de terrain : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF19990061	25/12/1999	29/12/1999	29/12/1999	30/12/1999

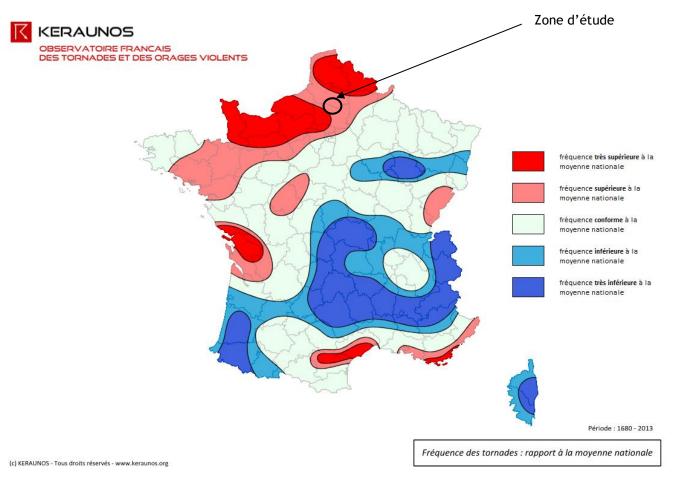
Inondations et coulées de boue : 4

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF20180008	03/09/2011	03/09/2011	28/11/2011	01/12/2011
60PREF20090010	25/05/2009	26/05/2009	14/08/2009	20/08/2009
60PREF19980033	06/06/1998	06/06/1998	22/10/1998	13/11/1998
60PREF19850005	19/05/1985	22/05/1985	02/10/1985	18/10/1985


Inondations par remontées de nappe phréatique : 2

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
60PREF20010011	25/03/2001	10/04/2001	27/04/2001	28/04/2001
60PREF20010046	01/02/2001	19/02/2001	29/05/2001	14/06/2001

La sensibilité de l'aire d'étude au risque d'inondation(s) est considérée comme faible.


Carte 10 - Risques naturels : Mouvement, effondrement de terrain et aléa retrait / gonflement des argiles

Etude de dangers - Version finale - 5 janvier 2024

4.2.2.8 Le risque de tornade

Carte 11 - Fréquence des tornades par rapport à la moyenne nationale Source : Keraunos

La région des Hauts-de-France compte parmi les zones du territoire français qui présentent une exposition marquée au risque de tornade. Le nombre de tornades au km² y est supérieur à la moyenne nationale. En moyenne, on estime qu'il se produit environ entre 1 à 3 tornades par an sur cette région. Les tornades se produisent en toutes saisons en Hauts-de-France.

Toutefois, les tornades y sont nettement plus fréquentes durant la saison chaude (de mai à octobre). Cette dernière rassemble en effet à elle seule plus de 85% des cas recensés. Les tornades de saison froide sont très minoritaires, avec une proportion qui est inférieure à la moyenne nationale (14% des cas recensés contre 26% en moyenne).

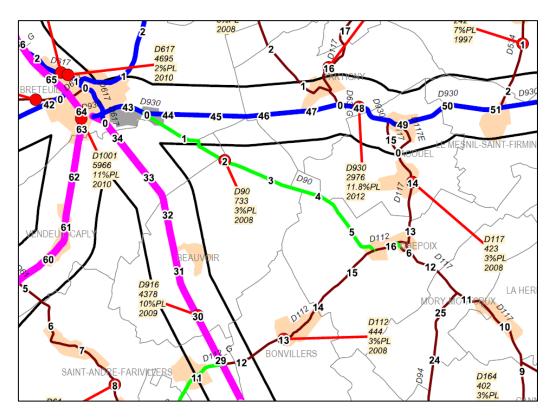
Les mois qui rassemblent le plus grand nombre de tornades sont les mois de juin et d'août.

Aucun évènement n'a été recensé dans la base de données nationale du site « keraunos » aux alentours de l'aire d'étude du projet.

L'évènement récent le plus proche recensé se situe sur la commune de Bonvillers en mai 2016, soit à environ 1.5 kilomètres de la ZIP.

4.2.3 Environnement matériel

4.2.3.1 Voies de communication


Le réseau routier

Le Plateau Picard est situé au nord de l'Île de France. Il est à proximité de grands centres urbains comme Montdidier, Compiègne, Roye...

Ce maillage territorial de routes nationales et départementales d'envergure forme un réseau assez dense avec des routes départementales d'importance moindre à l'échelon local autour du projet : RD90, RD916, RD112, RD930...

La zone d'étude est localisée sur des terrains agricoles peu fréquentés ou l'on recense le passage de routes communales et de la route Départementale D90 (carte 12).

Certains de ces chemins ne sont pas aménagés (non-praticables) et appartiennent désormais à la commune. Il s'agit que de routes non-structurantes dans la mesure où le trafic journalier est inférieur à 2000 véhicules par jour (RD90 : 733 véhicules / jours).

Carte 12 - Extrait de la carte des trafic routiers 2013 dans le département de l'Oise Source : Direction des Infrastructures Service de la Maintenance Routière de l'Oise

Le réseau ferroviaire et fluvial

Le projet et l'aire d'étude de 500m autour des éoliennes sont situés à environ 1300m à l'ouest de la voie ferrée principale qui relie Paris Nord à Lille et à 850m au sud de la ligne de Breteuil-Embranchement à Breteuil-Ville. Aucune voie navigable n'est recensée à proximité immédiate du projet.

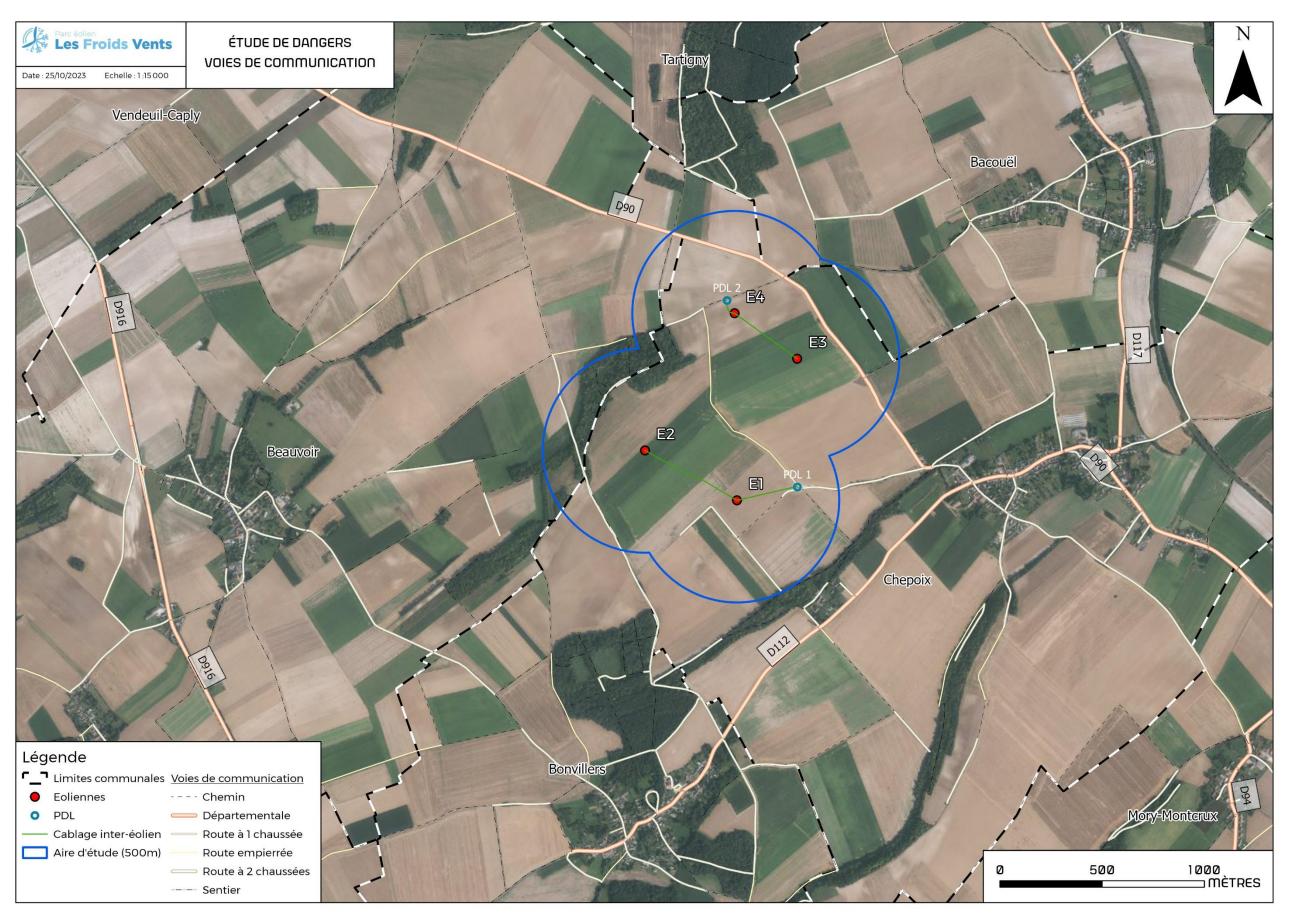
4.2.3.2 Les sentiers de randonnées

Un chemin de Grande Randonnée, GR 124, passe à travers le site du projet. Il relie la vallée du Thérain à la vallée de la Noye, en passant le long de la vallée de la Brèche et sur une bonne partie du Plateau picard.

Projet éolien Les Froids Vents

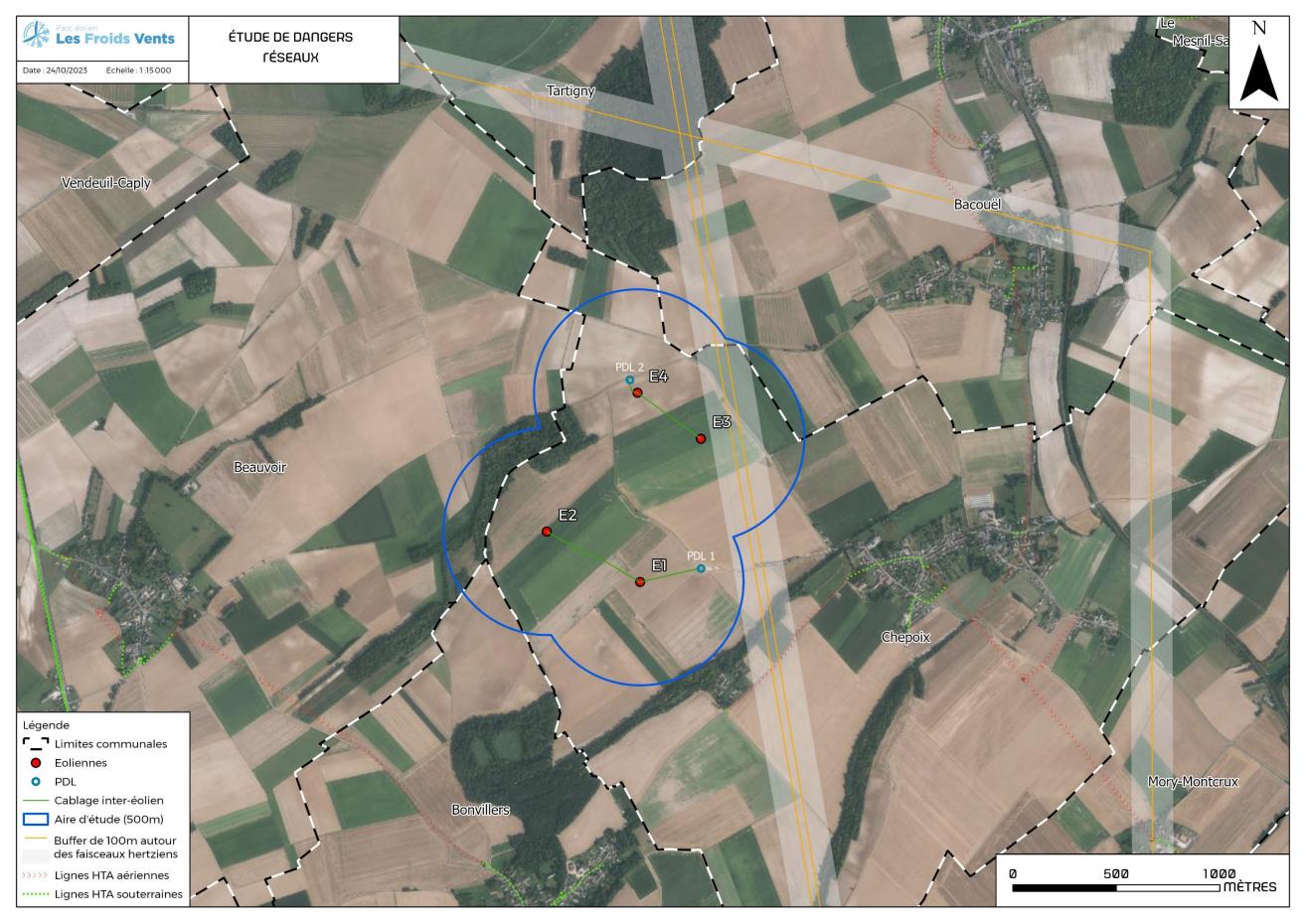
Dossier de demande d'autorisation environnementale

4.2.3.3 Réseaux publics et privés


Plusieurs lignes électriques sont situées à proximité du site :

- Une ligne à Moyenne Tension 63 kV traversant le Nord de l'aire d'étude
- Une ligne Haute Tension 400 kV à 8.5kilomètres à l'ouest de la zone d'implantation potentielle.

Par ailleurs, deux postes électriques sont présents dans un rayon de moins de 10 kilomètres de la zone d'étude. Le premier est situé à Breteuil à 3 kilomètres au Nord-ouest et le second à Gannes à 4,5 kilomètres au Sud-est. Une fois le projet autorisé, une nouvelle étude sur les potentialités de raccordement sera réalisée auprès du gestion de réseau ENEDIS.



Carte 13 - Voies de communication

Carte 14 - Cartographie des réseaux

Etude de dangers - Version finale - 5 janvier 2024

4.2.4 Cartographie de synthèse

Le nombre de personnes exposées est renseigné selon la fiche n°1 « Eléments pour la détermination de la gravité dans les études de dangers » de la circulaire du 10 mai 2010 (présentée en annexe).

D'après la carte du trafic annuel présentée ci-contre, on recense dans la zone des 500 m autour des éoliennes (zone d'étude), une majeure partie des terrains considérés comme étant des zones non aménagées peu à très peu fréquentées (champs, bois...). Cette catégorie correspond à une densité de 1 personne par tranche de 100 ha.

En ce qui concerne les voies présentes sur le site, il s'agit de voies communales et de chemins agricoles, correspondants à des zones aménagées, mais peu à très peu fréquentées. On considère donc une fréquentation de 1 personne par tranche de 10 ha (Annexe 1).

Les chemins d'accès aux éoliennes suivent principalement les chemins agricoles existants. Quelques portions de chemins seront créées, qui ne desserviront que les éoliennes. Leur fréquentation est négligeable (environ un passage de camion tous les 3 mois en moyenne pour la maintenance des machines).

Le GR 124 est à prendre en compte comme chemin de randonnée. Il n'existe pas de données de fréquentation du GR 124 mais de manière majorante nous retiendrons l'hypothèse d'une fréquentation inférieure ou égale à 100 promeneurs/jour en moyenne, ce qui correspondrait à 36 500 promeneurs par an. Pour les chemins de randonnée, on considère 2 personnes pour 1 km par tranche de 100 promeneurs par jour en moyenne.

Pour le total de la fréquentation sur l'ensemble du parc éolien, les intersections entre les périmètres de 500 m autour de chaque éolienne sont donc prises en compte plusieurs fois, ce qui correspond dans la réalité au fait que ces secteurs soient exposés aux risques liés à plusieurs éoliennes. Le tableau suivant synthétise les surfaces concernées par le projet.

	Surface totale en ha	Terrain non aménagé et très peu fréquenté en m²	Terrain aménagé et peu fréquentés en m²	Terrain de randonnée (m)
E1	78,54	773485	11912,96	0
E2	78,54	769783	15615,24	0
E3	78,54	764208	19834,58	677,7
E4	78,54	762327	21064,7	1003
Parc éolien	314,16	3069803,77	68427,48	1680,7

Tableau 6. Décomposition synthétique des surfaces considérées dans les zones autour de chaque éolienne

Le tableau ci-dessous montre la répartition du nombre équivalent au nombre de personnes permanentes exposées sur le périmètre de 500 m autour des éoliennes, en fonction du secteur concerné et calculé conformément à la circulaire de mai 2010 :

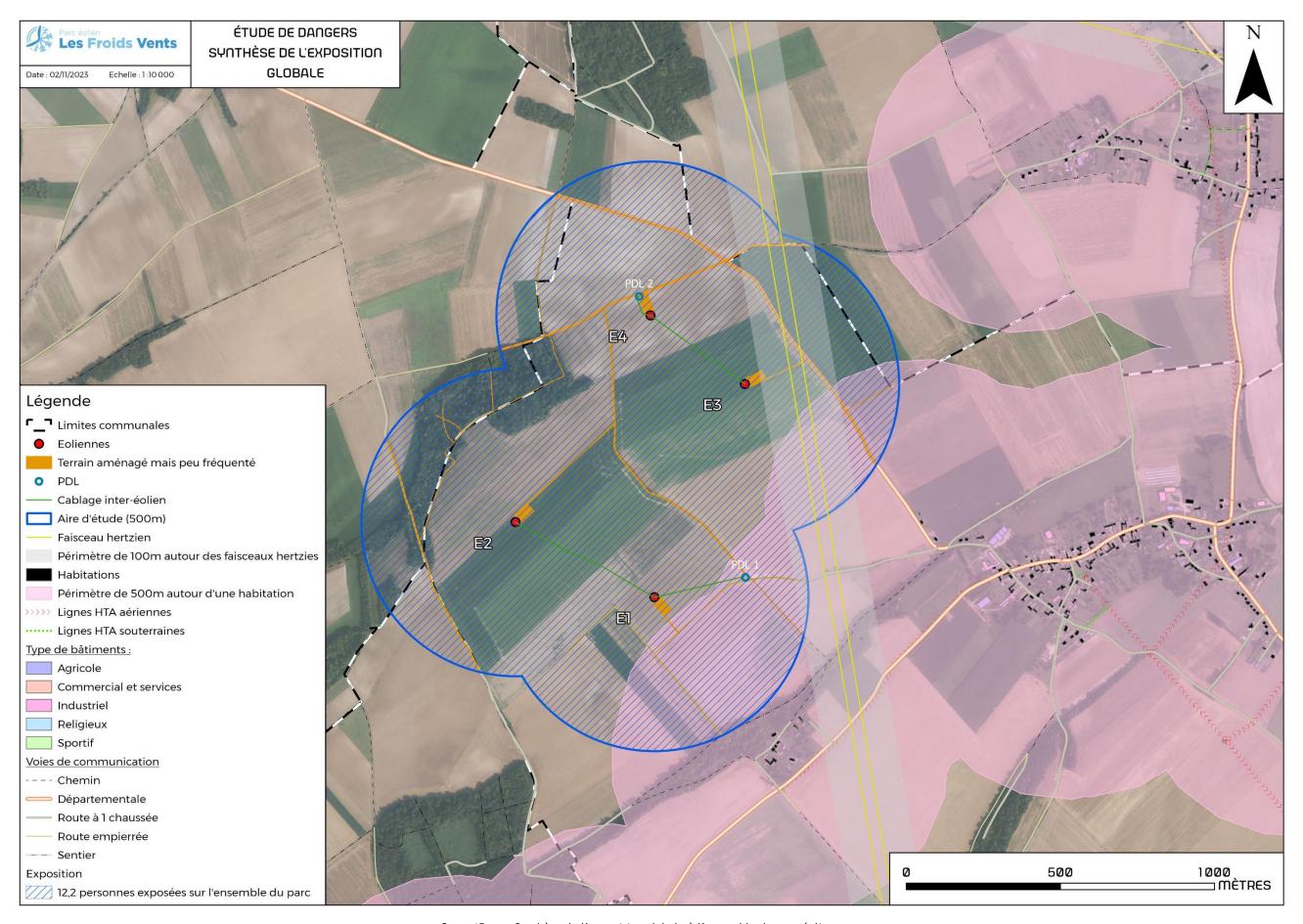
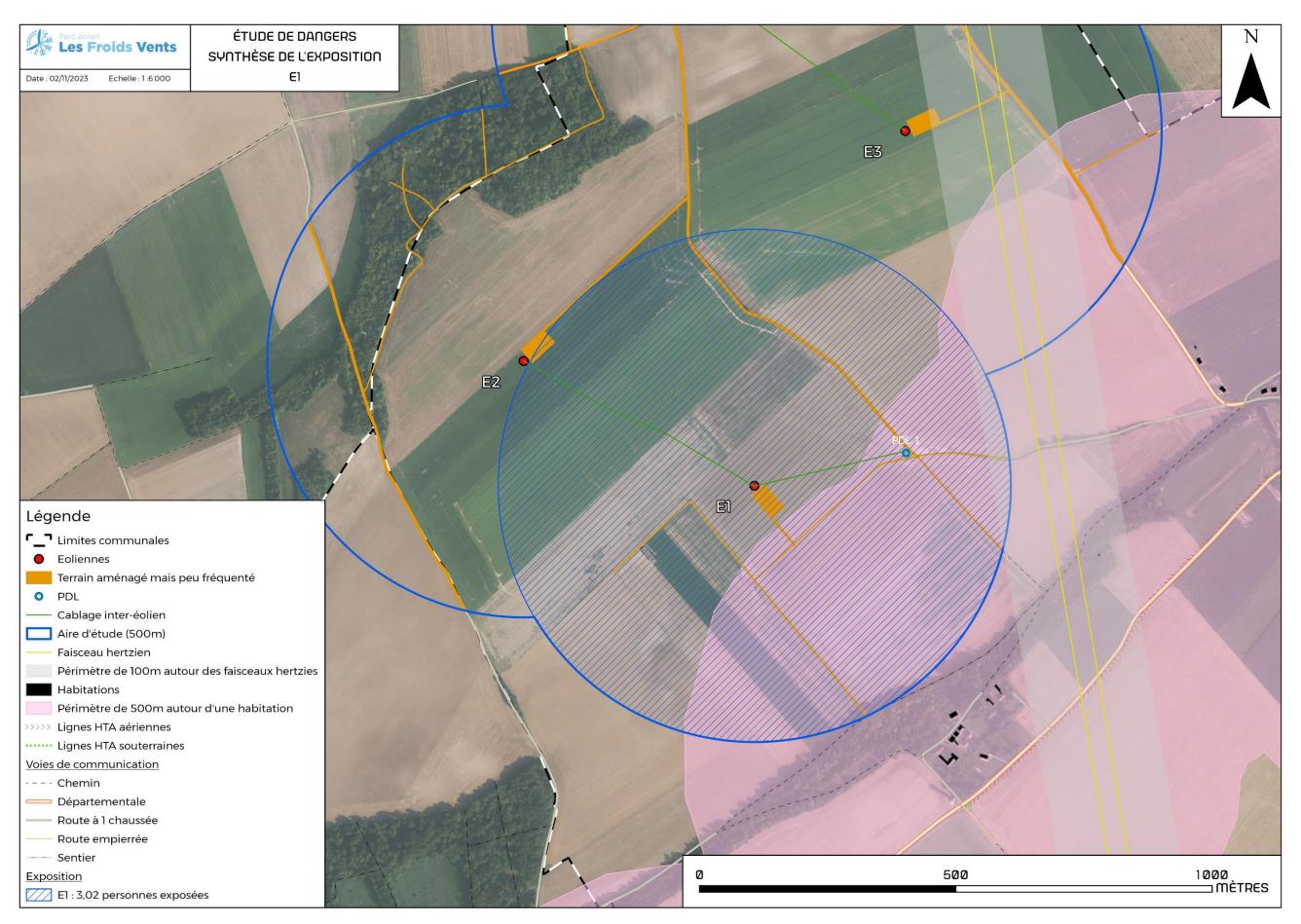

Type de surface concernée	Zones non aménagées, et très peu fréquentées	Zones aménagées et peu fréquentées	Terrain de randonnées	Nombre total de personnes exposées par secteur
E1	0,773485	0,11913	0	0,8926
E2	0,769783	0,15615	0	0,9259
E3	0,764208	0,19835	1,3554	2,3180
E4	0,762327	0,21065	2,006	2,9790
Parc éolien	3,0698	0,684	3,3614	7,1155

Tableau 7. Décomposition des surfaces considérées dans les zones autour de chaque éolienne

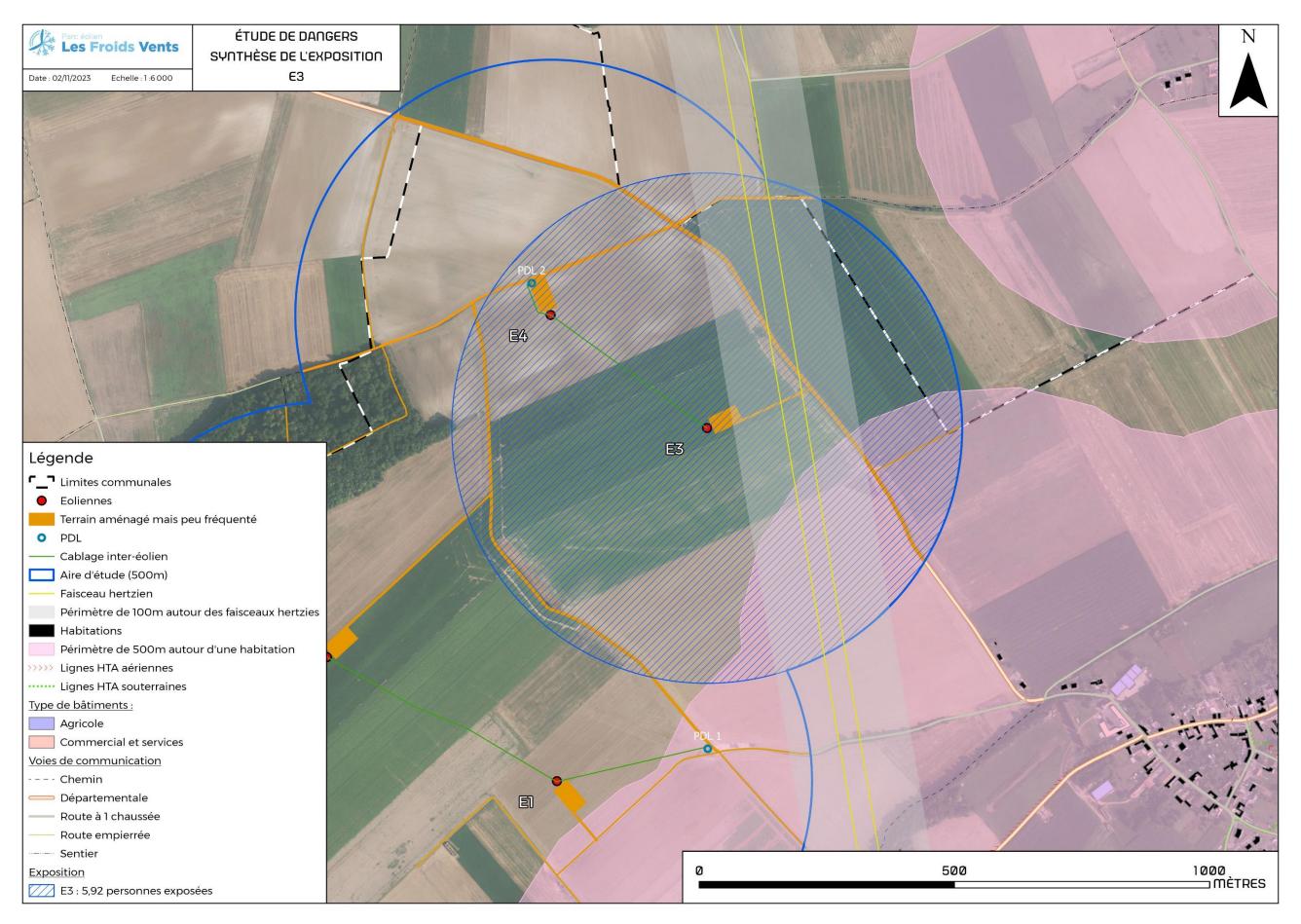
Pour conclure ce chapitre, les cartes dans ce paragraphe permettent d'identifier géographiquement les enjeux à protéger dans la zone d'étude (cartes 14 à 20).



Carte 15 - Synthèse de l'exposition globale à l'ensemble du parc éolien

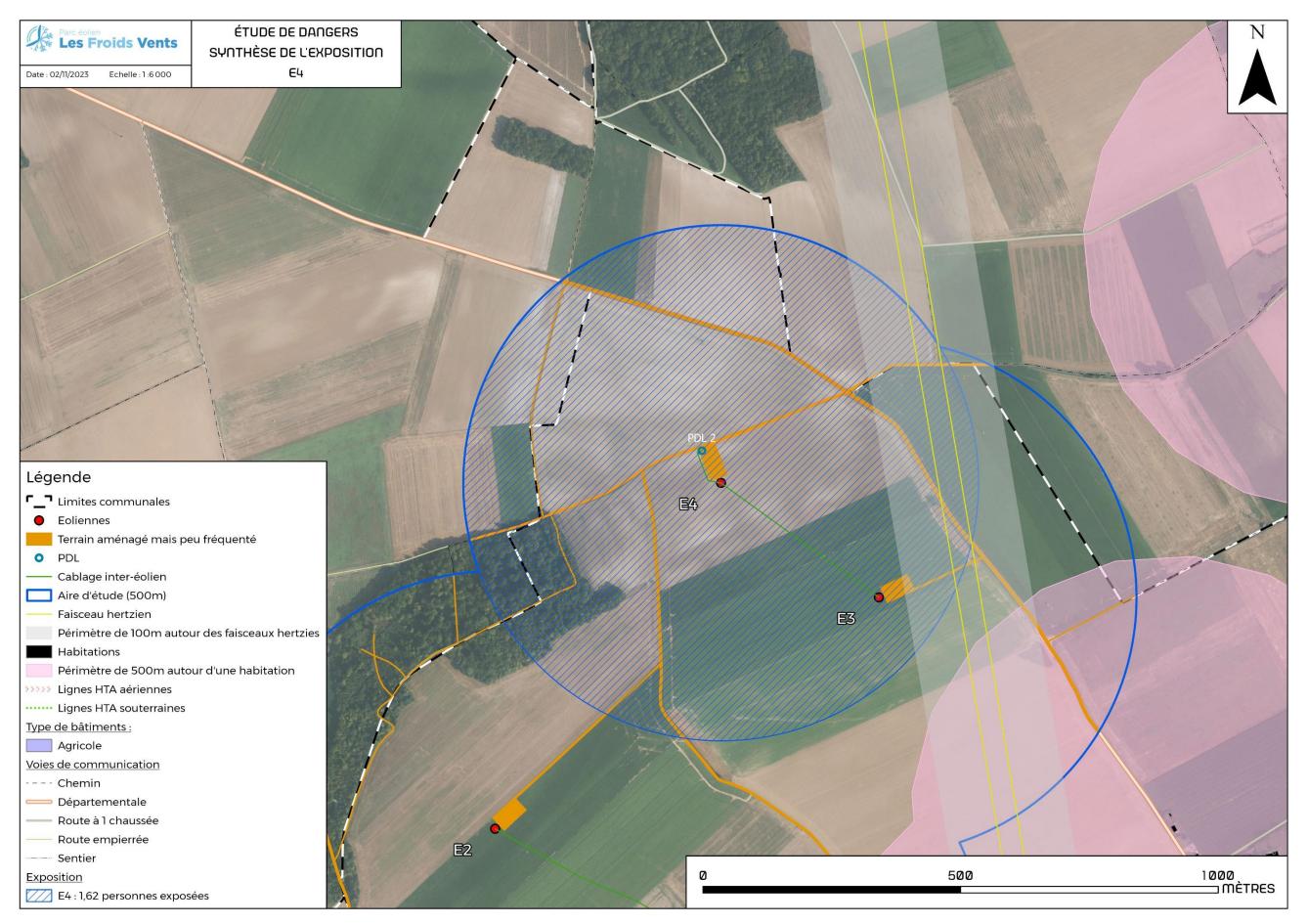
Etude de dangers - Version finale - 5 janvier 2024

Synthèse de l'exposition pour l'éolienne E1



Carte 16 - Synthèse de l'exposition pour l'éolienne E2

Etude de dangers - Version finale - 5 janvier 2024



Carte 17 - Synthèse de l'exposition pour l'éolienne E3

Etude de dangers - Version finale - 5 janvier 2024

Carte 18 - Synthèse de l'exposition pour l'éolienne E4

Etude de dangers - Version finale - 5 janvier 2024

TPGLOBAL

5 DESCRIPTION DE L'INSTALLATION

Ce chapitre a pour objectif de caractériser l'installation envisagée ainsi que son organisation et son fonctionnement, afin de permettre d'identifier les principaux potentiels de danger qu'elle représente (chapitre V), au regard notamment de la sensibilité de l'environnement décrit précédemment.

5.1 CARACTERISTIQUES DE L'INSTALLATION

5.1.1 Caractéristique générale d'un parc éolien

Un parc éolien est une centrale de production d'électricité à partir de l'énergie du vent. Il est composé de plusieurs aérogénérateurs et de leurs annexes :

- Plusieurs éoliennes fixées sur une fondation adaptée, accompagnée d'une aire stabilisée appelée « plateforme » ou « aire de grutage »
- Un réseau de câbles électriques enterrés permettant d'évacuer l'électricité produite par chaque éolienne vers le ou les poste(s) de livraison électrique (appelé « réseau inter-éolien »)
- Un ou plusieurs poste(s) de livraison électrique, concentrant l'électricité des éoliennes et organisant son évacuation vers le réseau public d'électricité au travers du poste source local (point d'injection de l'électricité sur le réseau public)
- Un réseau de câbles enterrés permettant d'évacuer l'électricité regroupée au(x) poste(s) de livraison vers le poste source (appelé « réseau externe » et appartenant le plus souvent au gestionnaire du réseau de distribution d'électricité)
- Un réseau de chemins d'accès
- Éventuellement des éléments annexes type mât de mesure de vent, aire d'accueil du public, aire de stationnement, etc.

5.1.1.1 Eléments constitutifs d'un aérogénérateur

Au sens du l'arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement, les aérogénérateurs (ou éoliennes) sont définis comme un dispositif mécanique destiné à convertir l'énergie du vent en électricité, composé des principaux éléments suivants : un mât, une nacelle, le rotor auquel sont fixées les pales, ainsi que, le cas échéant, un transformateur.

Les aérogénérateurs se composent de trois principaux éléments :

- Le rotor qui est composé de trois pales (pour la grande majorité des éoliennes actuelles) construites en matériaux composites et réunies au niveau du moyeu. Il se prolonge dans la nacelle pour constituer l'arbre lent.
- Le mât est généralement composé de plusieurs tronçons en acier ou d'anneaux de béton surmontés d'un
 ou plusieurs tronçons en acier. Dans la plupart des éoliennes, il abrite le transformateur qui permet
 d'élever la tension électrique de l'éolienne au niveau de celle du réseau électrique (ce transformateur
 peut aussi être localisé au pied du mât, à l'extérieur, de l'éolienne ou dans un local séparé de la nacelle).
- La nacelle abrite plusieurs éléments fonctionnels :
- o Le générateur transforme l'énergie de rotation du rotor en énergie électrique ;
- Le multiplicateur (certaines technologies n'en utilisent pas);
- Le système de freinage mécanique ;
- Le système d'orientation de la nacelle qui place le rotor face au vent pour une production optimale d'énergie;
- Les outils de mesure du vent (anémomètre, girouette);
- Le balisage diurne et nocturne nécessaire à la sécurité aéronautique.

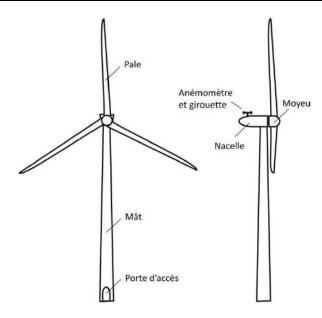


Figure 4 - Schéma simplifié d'un aérogénérateur

5.1.1.2 Emprise au sol

Plusieurs emprises au sol sont nécessaires pour la construction et l'exploitation des parcs éoliens :

- La surface de chantier est une surface temporaire, durant la phase de construction, destinée aux manœuvres des engins et au stockage au sol des éléments constitutifs des éoliennes ;
- La fondation de l'éolienne est recouverte de terre végétale. Ses dimensions exactes sont calculées en fonction des aérogénérateurs et des propriétés du sol ;
- La zone de surplomb ou de survol correspond à la surface au sol au-dessus de laquelle les pales sont situées, en considérant une rotation à 360° du rotor par rapport à l'axe du mât;
- La plateforme correspond à une surface permettant le positionnement de la grue destinée au montage et aux opérations de maintenance liées aux éoliennes. Sa taille varie en fonction des éoliennes choisies et de la configuration du site d'implantation.

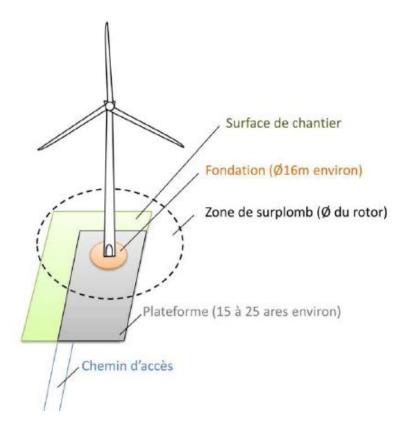


Figure 5 - Illustration des emprises au sol d'une éolienne

5.1.1.3 Chemin d'accès

Pour accéder à chaque aérogénérateur, des pistes d'accès sont aménagées pour permettre aux véhicules d'accéder aux éoliennes aussi bien pour les opérations de constructions du parc éolien que pour les opérations de maintenance liées à l'exploitation du parc éolien :

- L'aménagement de ces accès concerne principalement les chemins agricoles existants;
- Si nécessaire, de nouveaux chemins sont créés sur les parcelles agricoles.

Durant la phase de construction et de démantèlement, les engins empruntent ces chemins pour acheminer les éléments constituants les éoliennes et de leurs annexes.

Durant la phase d'exploitation, les chemins sont utilisés par des véhicules légers (maintenance régulière) ou par des engins permettant d'importantes opérations de maintenance (ex : changement de pale).

Ces accès seront carrossables et permettront aux services d'incendie et de secours d'intervenir, comme le prévoit l'article 7 de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation ICPE.

5.1.1.4 Autres infrastructures

Le raccordement électrique souterrain est le réseau de câbles interne au parc éolien. Il permet de diriger l'électricité produite par les éoliennes vers les postes de livraison.

Le raccordement électrique souterrain sera établi suivant les prescriptions de l'arrêté technique du 17 mai 2001 fixant les conditions techniques auxquelles doivent satisfaire les réseaux de distribution d'énergie électrique.

Les ouvrages seront conçus et réalisés suivant l'état de l'art, la réglementation et les normes en vigueur, notamment les normes NF C 15-100 (installations électriques basse tension), NF C 13-100 (postes de livraison), NF C 13-200 (installations électriques haute tension), NF C 33-226 (conception des câbles) et NF C 20-030 (protection contre les chocs électriques).

5.1.2 Activités de l'installation

L'activité principale du parc éolien Les Froids Vents est la production d'électricité à partir de l'énergie mécanique du vent avec une hauteur (mât + nacelle) de 180 m pour tous les aérogénérateurs. Cette installation est donc soumise à la rubrique 2980 des installations classées pour la protection de l'environnement.

5.1.3 Composition de l'installation

Le projet consiste en l'aménagement de 4 éoliennes, de deux postes de livraison et d'un SCADA (système de contrôle et d'acquisition de données).

Aucune construction existante n'est supprimée et aucun défrichement n'est nécessaire.

Pour les éoliennes du parc éolien Les Froids Vents, plusieurs types d'aérogénérateurs ont été étudiés. <u>Un type a été finalement identifié pour le projet :</u>

VESTAS V150 - 4,5 MW

Eolienne	VESTAS V150 - 4,5 MW
Puissance nominale	4 200 à 4 500 kW
Diamètre du rotor	150 m
Longueur d'une pale	73 m
Largeur maximale d'une pale (Corde)	4,2 m
Hauteur de moyeu	105m
Diamètre maximum à la base	4 m
Hauteur en bout de pale	180m

Tableau 8. Modèles d'aérogénérateurs pressentis dans le cadre de l'étude de dangers

Les locaux contenant les postes de livraison auront les dimensions suivantes :

- Longueur de 9 m;
- Largeur de 3 m, ;
- Hauteur de 2,70m.

Le tableau suivant indique les coordonnées géographiques des 4 aérogénérateurs et des 2 postes de livraison :

		Coordonné	es en Lambert 93					
	Х	X Y Altitude en m NGF Altitude en m au sol maximale (bout d						
E1	653755	6945143	133 m	313 m				
E2	653305	6945387	945387 152 m 33					
E3	654049	310 m						
E4	653743	6946057	946057 126 m 306					
Postes de livraison 1	654047	6945210	124 m	/				
Postes de livraison 2	121 m	/						

Tableau 9. Coordonnées géographiques des éoliennes et du poste de livraison

Le choix final des aérogénérateurs dépendra de la négociation avec les fabricants et des résultats de l'étude de vent

Afin de ne pas risquer de sous-évaluer les dangers de l'installation, il est choisi de définir un gabarit théorique dont les paramètres ont été choisis sur la base des dimensions maximales du modèle éligible pour le projet. Les dimensions maximalistes du gabarit théorique permettent d'analyser les risques de manière majorante.

Le gabarit retenu pour cette étude est :

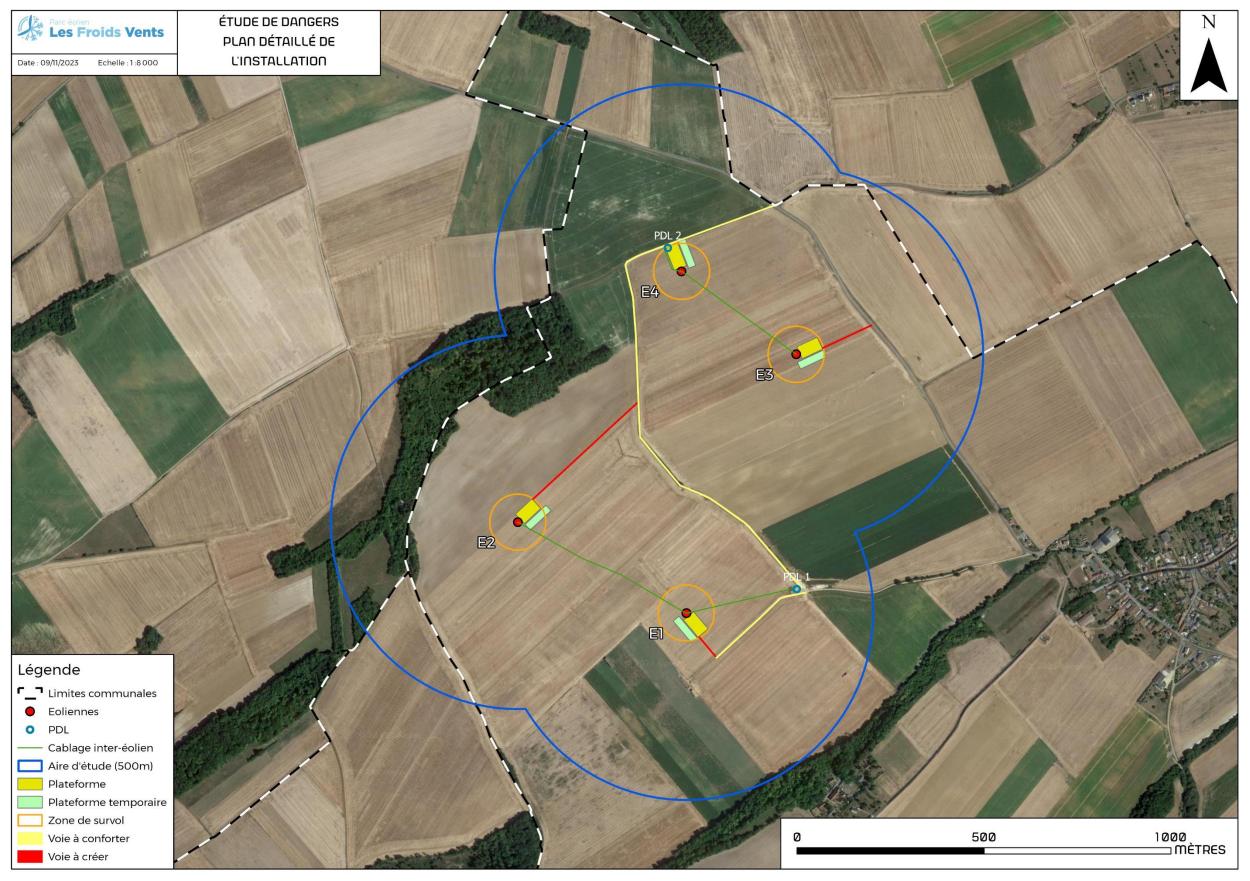

Eolienne	E1-E2-E3-E4		
Puissance nominale	4 500 kW		
Diamètre du rotor	150 m		
Longueur d'une pale	73 m		
Largeur maximale d'une pale (Corde)	4,2 m		
Hauteur de moyeu	105 m		
Diamètre maximum à la base	4 m		
Hauteur en bout de pale	180 m		

Tableau 1. Gabarit maximaliste retenu pour la réalisation de l'étude de dangers

La carte à la page suivante représente le plan détaillé des éoliennes du le parc éolien Les Froids Vents :

Carte 19 - Plan détaillé de l'installation

Dossier de demande d'autorisation environnementale

5.2 FONCTIONNEMENT DE L'INSTALLATION

5.2.1 Principes de fonctionnement d'un aérogénérateur

Les instruments de mesure de vent placés au-dessus de la nacelle conditionnent le fonctionnement de l'éolienne. Grâce aux informations transmises par la girouette qui détecte la direction du vent, le rotor se positionnera pour être continuellement face au vent.

Les pales se mettent en mouvement lorsque l'anémomètre (positionné sur la nacelle) indique une vitesse de vent d'environ 7.2 km/h et c'est seulement à partir de 12 km/h que l'éolienne est couplée au réseau électrique.

Le rotor et l'arbre dit « lent » transmettent alors l'énergie mécanique à basse vitesse (entre 5 et 20 tr/min) aux engrenages du multiplicateur, dont l'arbre dit « rapide » tourne environ 100 fois plus vite que l'arbre lent. Toutefois, certaines éoliennes sont dépourvues de multiplicateur et la génératrice est entraînée directement par l'arbre « lent » lié au rotor. C'est le cas des modèles d'aérogénérateur choisis dans le cadre de ce projet. La génératrice transforme l'énergie mécanique captée par les pales en énergie électrique.

La puissance électrique produite varie en fonction de la vitesse de rotation du rotor. Dès que le vent atteint environ 50 km/h à hauteur de nacelle, l'éolienne fournit sa puissance maximale. Cette puissance est dite « nominale ».

Pour un aérogénérateur de 3 MW par exemple, la production électrique atteint 3000 kW dès que le vent atteint environ 50 km/h. L'électricité produite par la génératrice correspond à un courant alternatif d'une tension de 400 à 690 V. La tension est ensuite élevée jusqu'à 20 000 V par un transformateur placé dans chaque éolienne pour être ensuite injecté dans le réseau électrique public.

Lorsque la mesure de vent, indiquée par l'anémomètre, atteint des vitesses de plus de 100 km/h (variable selon le type d'éoliennes), l'éolienne cesse de fonctionner pour des raisons de sécurité. Deux systèmes de freinage permettront d'assurer la sécurité de l'éolienne :

- Le premier par la mise en drapeau des pales, c'est-à-dire un freinage aérodynamique : les pales prennent alors une orientation parallèle au vent ;
- Le second par un frein mécanique sur l'arbre de transmission à l'intérieur de la nacelle.

Le tableau ci-après expose de façon synthétique le découpage fonctionnel de l'installation.

Elément de l'installation	Fonction	VESTAS V150 - 4,5 MW
Fondation	Ancrer et stabiliser l'éolienne dans le sol	En béton armé, de forme octogonale Design adapté en fonction des études géotechnique et hydrogéologique réalisées avant la construction
Mât	Supporter la nacelle et le rotor	Hauteur de moyeu : 105m Diamètre de section : 4m Diamètre section haute : 3.1m
Nacelle	Supporter le rotor Abriter le dispositif de conversion de l'énergie mécanique en électricité (génératrice, etc.) ainsi que les dispositifs de contrôle et de sécurité	Poids à vide : 70 tonnes Poids total : 157 tonnes Longueur : 12.9m Largeur : 3.9m
Rotor / pales	Capter l'énergie mécanique du vent et la transmettre à la génératrice	Diamètre de rotor : 150m Longueur de pales : 73m Orientation active des pales face au vent Plastique renforcé à la fibre de verre (GFK), protection contre la foudre intégrée en accord complet avec la norme IEC 61 - 400-24 (Juin 2010) Surface balayée : 17671m²
Générateur électrique	L'énergie mécanique du vent est transformée en énergie électrique Puissance nominale par le générateur	
Truisjoiniuteur		A l'intérieur du mât Tension de 20 kV à la sortie
Poste de livraison	Adapter les caractéristiques du courant électrique à l'interface entre le réseau privé et le réseau public	Equipé de différentes cellules électriques et automates qui permettent la connexion et la déconnexion du parc éolien au réseau 20 kV

Tableau 2. Présentation des différentes composantes de l'installation

Dossier de demande d'autorisation environnementale

5.2.2 Sécurité de l'installation

Règles de conception et système qualité

Les constructeurs, fournissant les machines et en assurant la maintenance, sont certifiés ISO 9001. Le système de management de la qualité et tous les processus de production sont conformes à la norme ISO 9001.

Les aérogénérateurs font l'objet d'évaluations de conformité (tant lors de la conception que lors de la construction), de certifications de type (certifications CE) par un organisme agréé et de déclarations de conformité aux standards et directives applicables. Les équipements projetés répondront aux normes internationales de la Commission électrotechnique internationale (CEI) et Normes françaises (NF) homologuées relatives à la sécurité des éoliennes, et notamment :

- La norme IEC61400-1 / NF EN 61400 qui spécifie les exigences de conception essentielles pour assurer l'intégrité technique des éoliennes. Elle a pour objet de fournir un niveau de protection approprié contre les dommages causés par tous les risques pendant la durée de vie prévue. Elle concerne tous les soussystèmes des éoliennes tels que les mécanismes de commande et de protection, les systèmes électriques internes, les systèmes mécaniques et les structures de soutien ; La norme IEC 61400-1 spécifie les exigences de conception essentielles pour assurer l'intégrité technique des éoliennes ;
- La norme IEC61400-22 / NF EN 61400-qui définit les règles et procédures d'un système de certification des éoliennes comprenant la certification de type et la certification des projets d'éoliennes installées sur terre ou en mer. Ce système spécifie les règles relatives aux procédures et à la gestion de mise en œuvre de l'évaluation de la conformité d'une éolienne et des parcs éoliens, avec les normes spécifiques et autres exigences techniques en matière de sécurité, de fiabilité, de performance, d'essais et d'interaction avec les réseaux électriques ;
- La norme CEI/TS 61400-23 intitulée « essais en vraie grandeur des structures des pales » relative aux essais mécaniques et essais de fatigue.

D'autres normes de sécurité sont applicables :

- La génératrice est construite suivant le standard IEC60034 et les équipements mécaniques répondent aux règles fixées par la norme ISO81400-4;
- La protection foudre de l'éolienne répond au standard IEC61400-24 et aux standards non spécifiques aux éoliennes comme IEC62305-1, IEC62305-3 et IEC62305-4;
- La Directive 2014/30/UE relative aux réglementations qui concernent les ondes électromagnétiques;
- Le traitement anticorrosion des éoliennes répond à la norme ISO 9223.

Au cours de la construction de l'éolienne, le maître d'ouvrage mandatera un bureau de vérification pour le contrôle technique de construction.

Les performances des éoliennes sont garanties dans la mesure où les conditions d'installation sont conformes aux spécifications du constructeur.

Conformité aux prescriptions de l'arrêté ministériel

L'installation est conforme aux prescriptions de l'arrêté ministériel relatif aux installations soumises à autorisation au titre de la rubrique 2980 des installations classées relatives à la sécurité de l'installation ainsi qu'aux principales normes et certifications applicables à l'installation.

Cela concerne notamment:

- L'éloignement de 500 mètres de toute construction à usage d'habitation, de tout immeuble habité ou de toute zone destinée à l'habitation telle que définie dans les documents d'urbanisme en vigueur et de 300 mètres d'une installation nucléaire ;
- L'implantation de façon à ne pas perturber de manière significative le fonctionnement des radars et des aides à la navigation utilisés dans le cadre des missions de sécurité de la navigation aérienne et de sécurité météorologique des personnes et des biens ;

- La présence d'une voie d'accès carrossable entretenue permettant l'intervention des services d'incendie et de secours ;
- Le respect des normes suivantes : norme NF EN 61 400-1 ou IEC 61 400-1 ou toute norme équivalente en vigueur dans l'Union européenne ;
- L'installation conforme aux dispositions de l'article R. 125-17 du code de la construction et de l'habitation,
- Les installations électriques sont conformes aux dispositions de la directive du 17 mai 2006 qui leur sont applicables ;
- Le respect des normes suivantes : normes « NF EN » IEC 61 400-24, NF C 15-100, NF C 13-100 et NF C 13-200, dans leur version en vigueur ;
- Le balisage de l'installation conformément aux dispositions prises en application des articles L. 6351-6 et L. 6352-1 du code des transports et des articles R. 243-1 et R. 244-1 du code de l'aviation civile ;
- Le maintien fermé à clé des accès à l'intérieur de chaque aérogénérateur, des postes de transformation, de raccordement ou de livraison, afin d'empêcher les personnes non autorisées d'accéder aux équipements;
- L'affichage visible des prescriptions à observer par les tiers sur un panneau sur le chemin d'accès de chaque aérogénérateur, sur les postes de livraison et, le cas échéant, sur le poste de raccordement ;
- La réalisation d'essais d'arrêt permettant de s'assurer du fonctionnement correct de l'ensemble des équipements avant la mise en service industrielle des aérogénérateurs ;
- L'interdiction d'entreposage à l'intérieur de l'aérogénérateur de matériaux combustibles ou inflammables.

La description détaillée des différents systèmes de sécurité de l'installation sera quant à elle effectuée au stade de l'analyse préliminaire des risques.

Gestion à distance du fonctionnement des éoliennes

L'exploitation des éoliennes ne fera pas l'objet d'une présence permanente sur site, mis à part lors des opérations de maintenance. Le fonctionnement du parc éolien est entièrement automatisé et contrôlé à distance depuis le centre de commande du parc éolien.

L'exploitation des éoliennes s'effectue grâce à un Automate Programmable Industriel (API) qui analyse en permanence les données en provenance des différents capteurs de l'installation et de l'environnement (conditions météorologiques, vitesse de rotation des pales, production électrique, niveau de pression du réseau hydraulique, etc.) et qui contrôle les commandes en fonction des paramètres.

Sur un moniteur de contrôle placé au niveau du poste électrique de livraison, toutes les données d'exploitation peuvent être affichées et contrôlées, et des fonctions telles que le démarrage, l'arrêt et l'orientation des pales peuvent être commandées.

De plus, les éoliennes sont équipées d'un système de contrôle à distance des données.

La supervision peut s'effectuer à distance depuis un PC équipé d'un navigateur Internet et d'une connexion ADSL ou RNIS. Le logiciel de supervision (SCADA - Supervising Control And Data Acquisition) utilisé sera propre à la solution développée par le constructeur.

Le SCADA constitue un terminal de dialogue entre l'automate et son système d'entrée/sortie, connecté en réseau au niveau des armoires de contrôle.

Les parcs éoliens sont ainsi reliés à des centres de télésurveillance permettant le diagnostic et l'analyse de leur performance en permanence, ainsi que certaines actions à distance.

Ce dispositif assure la transmission de l'alerte en temps réel en cas de panne ou de simple dysfonctionnement. Il permet également de relancer aussitôt les éoliennes si les paramètres requis sont validés et les alarmes traitées.

C'est notamment le cas lors des arrêts de l'éolienne par le système normal de commande.

Chaque aérogénérateur sera doté d'un système de détection qui permettra d'alerter, à tout moment, l'exploitant ou un opérateur qu'il aura désigné, en cas d'incendie ou d'entrée en survitesse de l'aérogénérateur.

L'exploitant ou un opérateur qu'il aura désigné sera en mesure de transmettre l'alerte aux services d'urgence compétents dans un délai de quinze minutes suivant l'entrée en fonctionnement anormal de l'aérogénérateur. L'exploitant dressera la liste de ces détecteurs avec leur fonctionnalité et déterminera les opérations d'entretien destinées à maintenir leur efficacité dans le temps.

Chaque aérogénérateur sera doté de moyens de lutte contre l'incendie appropriés aux risques et conformes aux normes en vigueur, notamment :

- Un système d'alarme qui pourra être couplé avec le dispositif mentionné précédemment et qui informera l'exploitant à tout moment d'un fonctionnement anormal. Ce dernier sera en mesure de mettre en œuvre les procédures d'arrêt d'urgence mentionnées ci-dessus dans un délai de soixante minutes ;
- Au moins deux extincteurs situés à l'intérieur de l'aérogénérateur, au sommet et au pied de celui-ci. Ils seront positionnés de façons bien visibles et facilement accessibles.

Les agents d'extinction seront appropriés aux risques à combattre.

Chaque aérogénérateur sera équipé d'un système permettant de détecter ou de déduire la formation de glace sur les pales de l'aérogénérateur.

En cas de formation importante de glace, l'aérogénérateur sera mis à l'arrêt dans un délai maximal de soixante minutes. L'exploitant définira une procédure de redémarrage de l'aérogénérateur en cas d'arrêt automatique lié à la présence de glace sur les pales.

5.2.3 Nature et organisation des secours

Il est essentiel que le parc éolien Les Froids Vents soit connu, localisé et que les procédures appropriées aient été définies par les services de secours concernés. C'est suite à l'obtention de l'autorisation environnementale que l'exploitant du parc prend contact avec les services de secours, et utilise la fiche de renseignement en page suivante qui propose un menu d'informations à mettre à disposition du service de secours.

En cas de sinistre, les pompiers seront prévenus par le personnel du site ou les riverains directement par le 18. L'appel arrivera au Centre de Traitement des Appels (CTA), qui est capable de mettre en œuvre les moyens nécessaires en relation avec l'importance du sinistre.

Cet appel sera ensuite répercuté sur le Centre de Secours disponible et le plus adapté au type du sinistre.

Une voie d'accès donne aux services d'interventions un accès facilité au site du parc éolien. Les moyens d'intervention une fois l'incident ou accident survenu sont des moyens de récupération des fragments : grues, engins, camions.

En cas d'incendie avancé, les sapeurs-pompiers se concentreront sur le barrage de l'accès au foyer d'incendie. Une zone de sécurité avec un rayon de 500 mètres autour de l'éolienne devra être respectée.

N°	Renseignements	Utile aux servi	
14	kenseignements	OUI	NON
	Demander aux services de secours si ils veulent avoir :		
1	Le nom du parc		
2	Les plan d'accès, cartes avec chemin d'accès surlignés		
3	Les coordonnées géographiques (WGS84 / Lambert) de chaque machine + poste de livraison		21
4	Les N° des machines + postes (N° constructeurs avec la correspondance avec les N° exploitant)		
5	Le N° de téléphone de l'astreinte technique de l'exploitant (chargé de conduite)		
6	La hauteur du moyeu		
7	La hauteur du mât		
8	La définition d'un périmètre de sécurité en cas de besoin (350 à 500 m)		
9	La localisation et l'intensité des différentes sources de tension (plan, schéma,)		
10	La localisation des postes de livraison / de transformation		
11	La présence de SF6 ou non dans les transformateurs (ou de toutes autres substance dangereuse)		
12	Le type de transformateur : sec ou à bain d'huile		
13	Les systèmes antichutes et EPI généraux en place		
14	Le nombre et la hauteur des différents paliers		
15	Le N° du Point de Secours Public (si présent)		
16	La présence de panneautage ou non + localisation sur plan		
17	Un plan d'évacuation de la machine avec sorties d'urgence pour l'évacuation		
18	Points d'ancrage		
19	La localisation sur plan de l'alimentationBT / HT + des arrêts d'urgence		
20	Le système d'ouverture des portes (et la nécessité ou non d'utiliser des outils spécifiques pour l'ouverture)		
21	Leur demander si un véhicule de désincarcération doit être demandé spécifiquement en cas de nécessité d'intervention		

	Nombre total de document à fournir aux services de secours =		
	QUESTIONS SUPPLEMENTAIRES IMPORTANTES	OUI	NON
22	Avez-vous besoin d'autres informations ?		
22	Si oui, lesquelles ?		
23	Est il possible d'organiser des exercices / simulation d'évacuation d'urgence / d'incendie avec vos services ?		
24	Est il possible de venir vous rencontrer directement dans votre centre de		


INFORMATIONS UTILES A COMMUNIQUER AUX SERVICES DE SECOURS

es services de secours n'ont pas de manipulation à faire dans la machine qui devrait être déjà en sécurité s'ils doivent faire.

du secours à personne dans la mesure ou une machine doit être arrêtée et sécurisée avant que quiconque ne puisse y
pénétrer.

Il est possible de couper tout le parc en le demandant à ERDF en dernier recours => indiquer ici les coordonnées de l'exploitant qui neut demander la coupure qui nestionnaire de réseau.

Figure 6 - Fiche de sécurité d'intervention des secours

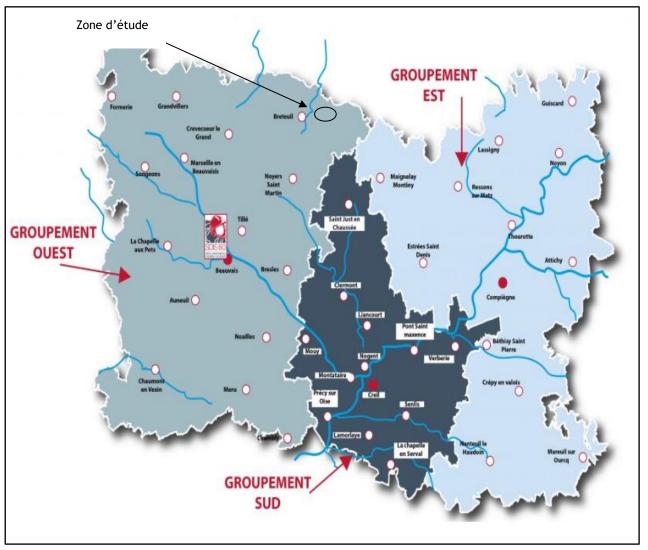
Les conditions d'intervention et les pratiques demandées par les services de secours se décomposent comme suit

Accès au parc

- La localisation doit être impérativement communiquée au début des travaux de construction du parc éolien.
- Afin de faciliter l'accès au parc et de réduire le temps d'intervention, des mesures pratiques sont définies avec les services de secours. Elles peuvent être à titre d'exemple
 - ✓ Demander la création d'un Point de Secours Public (PSP)
 - ✓ Indiquer l'emplacement des installations par un marquage important et visible de loin sur chaque machine
 - ✓ Installer des panneaux indicatifs aux croisements des routes départementales et des chemins d'accès aux installations

Accès aux machines

- Par mesure de sécurité, l'exploitant du parc éolien ferme à clef la porte d'entrée de l'éolienne lors de toute intervention du personnel. Afin de réduire le temps d'intervention, les approches suivantes peuvent être mises en place par exemple :
 - ✓ Mettre les clés à disposition en partie basse (dans les véhicules d'intervention)
 - ✓ Fournir un double de clés passe-partout au centre de secours le plus proche.


• Accès à la nacelle

- Les services de secours ont toujours à leur disposition leur propre matériel d'intervention pour l'utilisation duquel ils sont formés.
- Cependant, en fonction du constructeur et du type de machine pour la construction du parc, il se peut que le sac de matériel ne passe pas les trappes intermédiaires et/ou la nacelle/ le hub. Il faudra donc effectuer un exercice d'entrainement avec les services de secours dans un délai raisonnable suivant la mise en service du parc. Le mode d'emploi du palan/treuil pour monter le matériel de sauvetage dans la nacelle sera communiqué aux services de secours.
- Les points suivants sont également renseignés et agréés avec les services de secours concernés
 - ✓ Mise à disposition d'un sac d'Equipement de Protection Individuel complet (à leur remettre directement ou bien à laisser à demeure en machine ou au poste de livraison)
 - √ Mise à disposition de chariots antichute adaptés aux lignes de vie installées en machine.
 - ✓ Communication aux services de secours des manuels/ consignes d'utilisation des élévateurs de charges et de personnes, des treuils et palans ainsi que ceux de tout EPI mis à leur disposition.

• Simulation d'intervention et exercices d'évacuation

- Un exercice d'évacuation et de simulation d'intervention est organisé avec les services de secours concernés dans un délai de 6 mois à 1 an suivant la mise en service industrielle du parc éolien (cette demande sera formalisée par l'intermédiaire de la fiche de sécurité ci jointe). Pour cela, une éolienne du parc sera mise à disposition.
- Des exercices périodiques sont organisés entre les services de secours et l'exploitant du parc.

Le Centre d'Incendie et de Secours le plus proche est situé à Breteuil (environ 8km du parc éolien Les Froids Vents) :

Carte 20 - Localisation des centres d'incendie et de secours de l'Oise

5.2.3.1 Consignes et procédures de sécurité

La présente étude de danger se concentre essentiellement sur les dangers et les accidents potentiels que le parc éolien Les Froids Vents pourrait causer à des tiers.

Cependant, il est essentiel que préalablement à cette problématique, les aérogénérateurs présélectionnés assurent la sécurité des personnels intervenant dans les machines.

C'est pourquoi, pour les modèles envisagés il existe 3 niveaux de prévention et de sécurité.

• Procédure de sécurité et d'urgence

Tous les aérogénérateurs ont un système d'étiquetage des dangers dans les nacelles et les mâts des éoliennes. Cet étiquetage prévient les risques de chutes, d'écrasement d'électrocution et d'incendie dans les machines. De plus, chaque machine est pourvue d'un plan d'évacuation, d'une trousse de premiers secours et d'un panneau indiquant les numéros et lieux des médecins, hôpitaux et urgences les plus proches ainsi que le numéro de la personne responsable à appeler en cas d'urgence.

Utilisation et entretien des machines

Toutes les machines disposent d'un manuel d'utilisation dans chacune des machines indiquant le fonctionnement de l'éolienne et des divers équipements annexes la composant (monte-charge, treuil, ...). De plus, un manuel de maintenance ou guide d'entretien des machines détaillant la nature et la périodicité des travaux de maintenance est également à disposition dans chacune des machines. Enfin, un carnet de visite (log book) est à disposition dans chaque machine. Celui-ci doit être rempli et complété par chaque personne entrant et intervenant dans la machine avec les informations suivantes :

- Heure d'entrée ;
- Heure de sortie ;
- Nature de l'intervention;
- Matériel utilisé.

• Consignes de sécurité

Chaque turbinier met à disposition de l'exploitant un manuel Sécurité Santé au Travail. De plus, lors de la mise en service industriel du parc, un plan de prévention est mis à disposition par l'exploitant et doit être signé et pris en compte par toute entreprise extérieure intervenant dans les turbines

5.2.4 Opérations de maintenance de l'installation

Concernant les éoliennes le programme préventif de maintenance s'étale sur quatre niveaux :

- <u>Type 1</u>: vérification après 300 à 500 heures de fonctionnement (contrôle visuel du mât, des fixations fondation/tour, tour/nacelle, rotor...et test du système de déclenchement de la mise en sécurité de l'éolienne);
- Type 2 : vérification semestrielle des équipements mécaniques et hydrauliques ;
- <u>Type3</u> : vérification annuelle des matériaux (soudures, corrosions), de l'électrotechnique et des éléments de raccordement électrique ;
- Type 4 : vérification quinquennale de forte ampleur pouvant inclure le remplacement de pièces.

Chacune des interventions sur les éoliennes ou leurs périphériques fait l'objet de l'arrêt du rotor pendant toute la durée des opérations.

Pour la maintenance, une équipe de techniciens spécialisés sera employée. En cas de déviance sur la production ou d'avaries techniques, une équipe de maintenance interviendra sur le site.

Ainsi l'installation est conforme aux prescriptions de l'arrêté ministériel relatif aux installations soumises à autorisation au titre de la rubrique 2980 des installations classées en matière d'exploitation. Les principaux contrôles effectués sont présentés ci-après.

√ VESTAS V150 - 4,5 MW

	Composants	Opérations
	Etat général	Vérification de la propreté de l'intérieur de l'éolienne Vérification qu'aucun matériau combustible ou inflammable n'est entreposé dans l'éolienne
	Moyeu	Inspection visuelle du moyeu Vérification des boulons entre le moyeu et les supports de pale* Vérification des boulons maintenant la coque du moyeu
Inspection après 3 mois de fonctionnement	Pales	Vérification des roulements et du jeu Vérification des joints d'étanchéité Inspection visuelle des pales, de l'extérieur et de l'intérieur Vérification des boulons de chaque pale* Vérification des bruits anormaux Vérification des bandes paratonnerres
ection après 3 i	Système de transfert de courant foudre Moyeu / nacelle	Vérification des boulons et de l'absence d'impacts de foudre.
dsul	Arbre principal	Vérification des boulons fixant l'arbre principal et le moyeu* Inspection visuelle des joints d'étanchéité Vérification des bruits anormaux et des vibrations Vérification du fonctionnement du système de lubrification Vérification des dommages au niveau des boulons de blocage du rotor
	Système d'orientation de la nacelle (Yaw system)	Vérification des boulons fixant le haut du palier d'orientation et la tour* Vérification des bruits anormaux Vérification du système de lubrification

Tour	Vérification de l'état du béton à l'intérieur et à l'extérieur de la tour Vérification des boulons entre la partie fondation et la tour, entre les sections de la tour et sur l'échelle* Vérification des brides et des cordons de soudure Vérification des plateformes Vérification du câble principal
Bras de couple	Vérification boulons Vérification et serrage de la connexion à la terre
Système d'inclinaison des pales (Vestas Pitch System)	Vérification des boulons du cylindre principal et du bras de manivelle Vérification des boulons de l'arbre terminal et des roulements
Multiplicateur	Changement d'huile et nettoyage du multiplicateur si nécessaire Vérification du niveau sonore lors du fonctionnement du multiplicateur Vérification des joints, de l'absence de fuite, etc Vérification d'absence de fuites au niveau des points de lubrification Vérification des capteurs de débris
Huile du multiplicateur	Vérification du niveau d'huile Vérification des composants du bloc hydraulique et des pompes
Système de freinage	Vérification des étriers, des disques et des plaquettes de freins Inspection des entrées et des sorties de tuyaux
Générateur	Vérification des câbles électriques dans le générateur Vérification des fuites de liquides de refroidissement et de graisse Lubrification des roulements
Système de refroidissement par eau	Vérification du fonctionnement des pompes à eau Vérifications des tubes et des tuyaux Vérification du niveau de liquide de refroidissement
Vestas Cooler Top™	Vérification boulons
Système hydraulique	Vérification d'absence de fuites dans la nacelle, l'arbre principal et les pompes
Onduleur	Vérification du fonctionnement de l'onduleur.
Capteur de vent et balisage	Vérification du bon fonctionnement du balisage aérien et inspection visuelle du capteur de vitesse de vent.
aérien	
Nacelle	Vérification boulons Vérification d'absence de fissures autour des raccords Vérification des points d'ancrage et des fissures autour de ceux-ci
Extérieur	Vérification de la protection de surface Nettoyage des têtes de boulons et d'écrous, des raccords, etc.
Transformateur	Inspection mécanique et électrique du transformateur
Sécurité générale	Inspection des câbles électriques Inspection du système de mise à la terre

Ces opérations de maintenance courante seront répétées lors de l'inspection après la première année de fonctionnement, puis régulièrement selon le calendrier de maintenance. Les opérations de maintenance supplémentaires sont présentées ci-après.

	Composants	Opérations
	Moyeu	Vérification de l'état de la fibre de verre Vérification des joints d'étanchéité Vérification de la fonctionnalité des trappes d'accès et de leurs verrous
	Pales	Vérification des tubes de graissage et du bloc de distribution de graisse Vérification du niveau de graisse dans les collecteurs de graisse et remplacement s'ils sont pleins Remplissage du distributeur de graisse
ement	Système de transfert de courant foudre Moyeu / nacelle	Vérification du câble connectant les bandes anti-foudres Vérification des amortisseurs d'usure Vérification des bandes anti-foudre
Inspection après chaque année de fonctionnement	Système d'inclinaison des pales (Vestas Pitch System)	Vérification du bon fonctionnement du système d'inclinaison des pales Vérification de la pression des accumulateurs Vérification de la tension des fixations des accumulateurs Vérification des boulons Vérification des pistons des vérins hydrauliques
haque ann	Arbre principal	Vérification et lubrification des roulements principaux tous les 5 ans Vérification de l'ajustement des capteurs RPM Lubrification des boulons de blocage du rotor
rès c	Bras de couple	Vérification des boulons entre le bras de couple et le bâti tous les 4 ans
Inspection apr	Multiplicateur	Vérification et remplacement (si nécessaire) des filtres à air Remplacement des filtres à air tous les 10 ans Remplacement du système de détection de particules tous les 10 ans Vérification des flexibles de drainage. Replacement si nécessaire. Remplacement des flexibles de drainage tous les 10 ans Remplacement des tuyaux tous les 7 ans Inspection des boulons du système d'accouplement entre le multiplicateur et l'arbre principal tous les 4 ans Extraction d'un échantillon d'huile pour analyse
	Système de freinage	Vérification du câblage des capteurs d'usure et de chaleur
	Générateur	Remplacement des plaquettes de freins tous les 7 ans Vérification du bruit des roulements
		Vérification du système de graissage automatique

	Vérification su système de refroidissement
Système de refroidissement par eau	Remplacement du liquide de refroidissement tous les 5 ans
Système hydraulique	Vérification des niveaux d'huile et remplacement si nécessaire Extraction d'un échantillon d'huile pour analyse Changement d'huile selon les rapports d'analyse Remplacement des filtres (tous les ans, tous les 2 ans ou tous les 4 ans, selon le filtre) Remplacement des filtres (tous les ans, tous les 2 ans ou tous les 4 ans, selon le filtre) Contrôle des flux et de la pression Vérification de la pression dans le système de frein
Vestas Cooler Top™	Inspection visuelle du Vestas Cooler Top™ et des systèmes parafoudres
Onduleur	Vérification du bon fonctionnement de l'onduleur Remplacement des différents filtres des ventilateurs Remplacement des différents ventilateurs tous les 5 ans Remplacement de la batterie tous les 5 ans
Capteur de vent et balisage aérien	Inspection visuelle du capteur de vitesse de vent et du bon fonctionnement du balisage.
Nacelle	Changement des filtres à air Changement des batteries des processeurs
Tour	Changement des filtres de ventilation contaminés Maintenance de l'élévateur de personnes
Système de détection d'arc électrique	Test du capteur de détection d'arc électrique du jeu de barres et dans la salle du transformateur
Système d'orientation nacelle (Yaw System)	Lubrification de la Couronne d'orientation Vérification du niveau d'huile des motoréducteurs, et remplissage si besoin Changement de l'huile des motoréducteurs tous les 10 ans Vérification et ajustement du couple de freinage
Armoire de contrôle en pied de tour	Test des batteries Remplacement des batteries de secours tous les 5 ans Remplacement des radiateurs en cas de défaillance
Sécurité générale	Test des boutons d'arrêt d'urgence Test d'arrêt en cas de survitesse Vérification des équipements de sauvetage Vérification de la date d'inspection des extincteurs Test des détecteurs de fumée (si installés) Vérification du système antichute

5.2.6 Stockage et flux de produits dangereux

Conformément à l'article 16 de l'arrêté du 26 août 2011, aucun matériel inflammable ou combustible ne sera stocké dans les éoliennes du parc Les Froids Vents.

De plus, une fiche de données de sécurité (FDS) de chaque produit dangereux est fournie par les constructeurs.

5.2.7 Fonctionnement des réseaux de l'installation

Dans la carte de présentation de l'ensemble de l'installation, l'organisation de l'installation (câbles électriques enterrés : cf. carte 20) est exposée et ce réseau électrique respecte les normes ICPE en vigueur.

5.2.7.1 Raccordement électrique

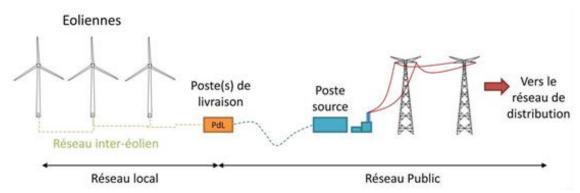


Figure 7 - Raccordement électrique des installations

• Réseau inter-éolien

Le réseau inter-éolien permet de relier le transformateur, intégré dans le mât de chaque éolienne, au point de raccordement avec le réseau public. Ce réseau comporte également une liaison de télécommunication qui relie chaque éolienne au terminal de télésurveillance. Ces câbles constituent le réseau interne de la centrale éolienne, ils sont tous enfouis à une profondeur minimale de 80 cm.

Ces câbles, dont la section en aluminium est de 150 ou 240 mm2, constituent le réseau interne de la centrale éolienne et sont conçus suivant la norme NFC 33-226. Ils sont tous enfouis à une profondeur minimale de 80 cm conformément à la norme NFC 13-200.

• Poste de livraison

Le poste de livraison est le nœud de raccordement de toutes les éoliennes avant que l'électricité ne soit injectée dans le réseau public. Certains parcs éoliens, par leur taille, peuvent posséder plusieurs postes de livraison, voire se raccorder directement sur un poste source, qui assure la liaison avec le réseau de transport d'électricité (lignes haute tension).

La localisation exacte des emplacements des postes de livraison est fonction de la proximité du réseau interéolien et de la localisation du poste source vers lequel l'électricité est ensuite acheminée.

Les installations électriques des postes de livraison sont conformes à la norme NFC 13-100.

Le parc éolien Les Froids Vents comportera deux postes de livraison.

• Réseau électrique externe

Le réseau électrique externe relie le ou les postes de livraison avec le poste source (réseau public de transport d'électricité). Ce réseau est réalisé par le gestionnaire du réseau de distribution (généralement Enedis). Il est lui aussi entièrement enterré.

5.2.7.2 Autres réseaux


Une installation de production raccordée au réseau de distribution d'énergie électrique (réseau HTA) est composée schématiquement d'un poste de livraison assurant l'interface entre le réseau public de distribution inclus dans la concession de distribution et l'installation électrique intérieure. Cette dernière dessert les équipements généraux servant à assurer son bon fonctionnement ainsi que les unités de production proprement dites, avec leurs auxiliaires.

Le réseau électrique externe relie le(s) poste(s) de livraison avec le poste source. Ce réseau est réalisé par le gestionnaire du réseau de distribution. Il est lui aussi entièrement enterré.

La partie de réseau entre le poste de livraison et le réseau public, appelé réseau externe ou raccordement, sera réalisé sous maîtrise d'ouvrage du distributeur.

Carte 21 - Réseau inter-éolien du projet éolien

Etude de dangers - Version finale - 5 janvier 2024

5.2.7.3 Caractéristiques des câbles électriques

Ce réseau sera réalisé au moyen de câbles souterrains qui seront enfouis à une profondeur de 0,80 m minimum avec grillage avertisseur, et emprunteront les accotements des voiries ainsi que des parcelles agricoles.

5.2.7.4 Raccordement externe au HTA

Le raccordement électrique externe à l'installation, c'est-à-dire entre les postes de livraison qui seront créés et le réseau public d'électricité existant, est réalisé sous la responsabilité du gestionnaire de réseau compétent.

La solution de raccordement au réseau électrique n'est pas encore identifiée puisque la destination et le tracé de raccordement ne seront définis qu'une fois les autorisations délivrées, conformément à la Procédure de Raccordement.

Le décret n° 2018-1160 du 17 décembre 2018 qui modifie l'article R.323-25 du code de l'énergie indique : « Sans préjudice des conditions prévues par d'autres réglementations, à l'exception des lignes électriques aériennes dont le niveau de tension est supérieur à 50 kV, la construction des ouvrages des réseaux publics d'électricité mentionnés à l'article R. 323-23 fait l'objet, avant le début des travaux, d'une consultation des maires des communes et des gestionnaires des domaines publics sur le territoire ou l'emprise desquels les ouvrages doivent être implantés ainsi que des gestionnaires de services publics concernés par le projet ».

Ces consultations seront effectuées après avoir défini le poste source de raccordement et un premier tracé des liaisons.

5.2.7.5 Respect des normes techniques

L'exploitant s'engage à respecter la conformité des liaisons électriques intérieures avec la réglementation technique en vigueur (Annexe 4 : Caractéristiques et fiches techniques des réseaux de câbles). Les postes de livraison respecteront à minima les normes suivantes : NFC 13-100, NFC 13-200 et NFC 15-100. Les câbles respecteront à minima la norme NFC 33 226 HTA (POPY).

5.2.7.6 Qualification du personnel

Le décret n°88-1056 du 14 novembre 1988 (consolidé au 22 juin 2001) pris pour l'exécution des dispositions du livre II du Code du travail (titre III : Hygiène, sécurité et conditions du travail) en ce qui concerne la protection des travailleurs dans les établissements qui mettent en œuvre des courants électriques, indique dans la section VI les règles de protection des travailleurs dans les établissements mettant en œuvre des courants électriques. Le personnel sera qualifié pour l'intervention sur les équipements électriques.

Le personnel en charge de l'installation des équipements sera conforme à la norme NFC 18-510 pour les installations basse tension et haute tension. Des formations concernent également le personnel qui travaille sur des opérations d'ordre non-électriques, dans le voisinage et la zone des installations électriques. Au moment du chantier, un plan de prévention sera mis en place pour identifier par thèmes les risques liés au chantier et mettre en place des actions pour les éviter.

6 IDENTIFICATION DES POTENTIELS DE DANGERS DE L'INSTALLATION

Ce chapitre de l'étude de dangers a pour objectif de mettre en évidence les éléments de l'installation pouvant constituer un danger potentiel, que ce soit au niveau des éléments constitutifs des éoliennes, des produits contenus dans l'installation, des modes de fonctionnement, etc.

L'ensemble des causes externes à l'installation pouvant entraîner un phénomène dangereux, qu'elles soient de nature environnementale, humaine ou matérielle, sera traité dans l'analyse de risques.

6.1 POTENTIELS DE DANGERS LIES AUX PRODUITS

L'activité de production d'électricité par les éoliennes ne consomme pas de matières premières, ni de produits pendant la phase d'exploitation. De même, cette activité ne génère pas de déchet, ni d'émission atmosphérique, ni d'effluent potentiellement dangereux pour l'environnement.

Les produits identifiés dans le cadre du parc éolien Les Froids Vents sont utilisés pour le bon fonctionnement des éoliennes, leur maintenance et leur entretien :

- Produits nécessaires au bon fonctionnement des installations (graisses et huiles de transmission, huiles hydrauliques pour systèmes de freinage...), qui une fois usagés sont traités en tant que déchets industriels spéciaux
- Produits de nettoyage et d'entretien des installations (solvants, dégraissants, nettoyants...) et les déchets industriels banals associés (pièces usagées non souillées, cartons d'emballage...)

Conformément à l'article 16 de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation, aucun produit inflammable n'est stocké dans les aérogénérateurs ou le(s) poste(s) de livraison.

Les risques associés aux différents produits concernant le site du parc éolien d'Ayencourt sont :

- L'incendie : des produits combustibles sont présents le site (graisses, huiles, ...). Ainsi, la présence d'une charge calorifique peut alimenter un incendie en cas de départ de feu ;
- La toxicité : Ce risque peut survenir suite à un incendie créant certains produits de décomposition nocifs, entraînés dans les fumées de l'incendie ;
- La pollution : En cas de fuite sur une capacité de stockage, la migration des produits liquides dans le sol peut entraîner une pollution, également en cas d'entraînement dans les eaux d'extinction incendie.

Potentiels de dangers de ces produits

• Inflammabilité et comportement vis-à-vis de l'incendie

Les huiles, les graisses et l'eau glycolée ne sont pas des produits inflammables. Ce sont néanmoins des produits combustibles qui sous l'effet d'une flamme ou d'un point chaud intense peuvent développer et entretenir un incendie. Dans les incendies d'éoliennes, ces produits sont souvent impliqués.

Certains produits de maintenance peuvent être inflammables, mais ils ne sont amenés dans l'éolienne que pour les interventions et sont repris en fin d'opération.

Le SF6 (Depuis 1960, le gaz SF6 est utilisé en tant que gaz d'extinction de l'arc et gaz isolant pour les appareils à Haute & Moyenne Tension) est pour sa part ininflammable.

Les disjoncteurs HT au SF6 utilise ce gaz (hexafluorure de soufre) car il est actuellement le meilleur connu pour l'extinction des arcs électriques du fait de son grand pouvoir isolant, ses capacités de transfert thermique et sa rigidité électrique (capacité à absorber les électrons).

C'est un gaz inerte, non inflammable, inodore et non toxique (bien que suffoquant à haute concentration dans une enceinte close et non ventilée). Un parfum lui est ajouté pour détecter une éventuelle fuite.

Les parties actives du disjoncteur sont enfermées dans une enveloppe isolante formant un ensemble étanche rempli de gaz SF6 à faible pression.

Etant donné son très fort potentiel d'effet de serre, les chambres de coupures sont scellées à vie. Lors du démantèlement d'un composant contenant du SF6 le gaz est récupéré et recyclé pour resservir dans de nouveaux disjoncteurs (norme IEC 61634).

C'est aussi la raison pour laquelle d'autres gaz de substitution sont en cours de recherche et de validation pour son remplacement.

Les appareils haute tension étant l'un des derniers secteurs d'utilisation de ce produit.

En cas de validation d'un alternatif d'ici à la construction du parc, les solutions sans SF6 seront, bien sûr, étudiées.

Sur un parc éolien raccordé au réseau de distribution électrique, on trouvera typiquement :

- 1 disjoncteur par point de raccordement ; situé dans le poste de livraison électrique (PDL) ;
- 1 disjoncteur par éolienne ; chaque éolienne étant indépendamment protégée en cas de problème électrique.

Le projet éolien Les Froids Vents comprendrait 4 éoliennes réparties sur 2 points de raccordement au réseau électrique.

Toxicité pour l'homme

Ces divers produits ne présentent pas de caractère de toxicité pour l'homme. Ils ne sont pas non plus considérés comme corrosifs (à causticité marquée).

• Dangerosité pour l'environnement

Vis-à-vis de l'environnement, le SF6 possède un potentiel de réchauffement global (gaz à effet de serre) très important, mais les quantités présentes sont très limitées (seulement 1 à 2 kg de gaz dans les cellules de protection). Les huiles et graisses, même si elles ne sont pas classées comme dangereuses pour l'environnement, peuvent en cas de déversement au sol ou dans les eaux entraîner une pollution du milieu.

En conclusion, il ressort que les produits ne présentent pas de réel danger, si ce n'est lorsqu'ils sont soumis à un incendie, où ils vont entretenir cet incendie, ou s'ils sont déversés dans l'environnement générant un risque de pollution des sols ou des eaux.

6.2 POTENTIELS DE DANGERS LIES AU FONCTIONNEMENT DE L'INSTALLATION

Les dangers liés au fonctionnement du parc éolien de Les Froids Vents sont de cinq types :

- Chute d'éléments de l'aérogénérateur (boulons, morceaux d'équipements, etc.) ;
- Projection d'éléments (morceaux de pale, brides de fixation, etc.) ;
- Effondrement de tout ou partie de l'aérogénérateur ;
- Echauffement de pièces mécaniques ;
- Courts-circuits électriques (aérogénérateur ou poste de livraison).

Ces dangers potentiels sont recensés dans le tableau suivant :

Installation ou système	Fonction	Phénomène redouté	Danger potentiel
Système de transmission	Transmission d'énergie mécanique	Survitesse	Echauffement des pièces mécaniques et flux thermique
Pale	Prise au vent	Bris de pale ou chute de pale	Energie cinétique d'éléments de pales
Aérogénérateur	Production d'énergie électrique à partir d'énergie éolienne	Effondrement	Energie cinétique de chute
Poste de livraison, intérieur de l'aérogénérateur	Réseau électrique	Court-circuit interne	Arc électrique
Nacelle	Protection des équipements destinés à la production électrique	Chute d'éléments	Energie cinétique de projection
Rotor	Transformer l'énergie éolienne en énergie mécanique	Projection d'objets	Energie cinétique des objets
Nacelle	Protection des équipements destinés à la production électrique	Chute de nacelle	Energie cinétique de chute

Tableau 3. Liste des dangers potentiels identifiés dans le cadre du fonctionnement d'un parc éolien

Dossier de demande d'autorisation environnementale

6.3 REDUCTION DES POTENTIELS DE DANGERS A LA SOURCE

6.3.1 Principales actions préventives

6.3.1.1 Choix de l'emplacement des installations et du modèle d'éolienne

Les principaux choix qui ont été effectués par le porteur de projet au cours de sa conception permettent de réduire les potentiels de dangers identifiés et garantir une sécurité optimale de l'installation.

Ces choix sont synthétisés ci-dessous :

- Le choix de la machine est adapté aux conditions de vent ;
- Lors de la démarche de conception du projet, RP GLOBAL a étudié plusieurs scénarii d'implantation afin de déterminer celui qui minimise les impacts vis-à-vis des intérêts mentionnés par l'article L 511-1 du Code de l'environnement (Cf. Etude d'impact : Analyse des variantes).

Le respect des prescriptions générales de l'arrêté du 26 août 2011 impose au projet :

- Un éloignement des aérogénérateurs de 500 m des zones habitées et à vocation d'habitat ;
- Un choix d'aérogénérateurs respectant des normes de sécurité et disposant d'équipements de prévention des risques ;
- La réalisation obligatoire d'un contrôle technique des ouvrages ;
- Les moyens techniques de RP GLOBAL et du futur constructeur sont mis à disposition via un contrat d'exploitation et de maintenance ;
- Le projet bénéficie de l'expérience de RP GLOBAL dans le développement de projet(s) éolien(s).

6.3.1.2 Substitution des produits par des produits moins dangereux et réduction des quantités

Les produits présents sur chaque éolienne (huile, fluide de refroidissement) sont des produits classiques utilisés dans ce type d'activité.

Ils ne présentent pas de caractère dangereux marqué et les quantités mises en œuvre sont adaptées aux volumes des équipements.

Le SF6 est un très bon isolant électrique et ne dispose pas à ce jour de produit de substitution présentant des qualités équivalentes. De plus, malgré son caractère de gaz à effet de serre, il ne présente pas de danger pour l'homme (ininflammable et non toxique).

Il n'est donc pas prévu de solution de substitution. L'utilisation du SF6 constitue déjà une mesure d'évitement du risque (sauf si validation d'un alternatif à ce gaz).

6.3.2 Utilisation des meilleurs techniques disponibles

L'Union Européenne a adopté un ensemble de règles communes au sein de la directive 96/61/CE du 24 septembre 1996 relative à la prévention et à la réduction intégrées de la pollution, dite directive IPPC (« Integrated Pollution Prevention and Control »), afin d'autoriser et de contrôler les installations industrielles.

Pour l'essentiel, la directive IPPC vise à minimiser la pollution émanant de différentes sources industrielles dans toute l'Union Européenne. Les exploitants des installations industrielles relevant de l'annexe I de la directive IPPC doivent obtenir des autorités des Etats-membres une autorisation environnementale avant leur mise en service.

<u>Les installations éoliennes, ne consommant pas de matières premières et ne rejetant aucune émission dans l'atmosphère, ne sont pas soumises à cette directive.</u>

7 ANALYSE DES RETOURS D'EXPERIENCE

Il n'existe actuellement aucune base de données officielle recensant l'accidentologie dans la filière éolienne. Néanmoins, il a été possible d'analyser les informations collectées en France et dans le monde par plusieurs organismes divers (associations, organisations professionnelles, littérature spécialisée, etc.). Ces bases de données sont cependant très différentes tant en termes de structuration des données qu'en termes de détail de l'information.

L'analyse des retours d'expérience vise donc ici à faire émerger des typologies d'accident rencontrés tant au niveau national qu'international. Ces typologies apportent un éclairage sur les scénarios les plus rencontrés. D'autres informations sont également utilisées dans la partie 9 pour l'analyse détaillée des risques.

7.1 INVENTAIRE DES ACCIDENTS ET INCIDENTS EN FRANCE

Un inventaire des incidents et accidents en France a été réalisé afin d'identifier les principaux phénomènes dangereux potentiels pouvant affecter le parc éolien Les froids Vents. Cet inventaire se base sur le retour d'expérience de la filière éolienne tel que présenté dans le guide technique de conduite de l'étude de dangers (mars 2012, modifié par l'arrêté du 22 juin 2020). Celui-ci a été complété par la consultation de la base de données ARIA (Analyse, Recherche et Information sur les Accidents) en octobre 2023.

La base de données ARIA, très complète, permet de connaître l'ensemble des éléments suivants :

- Temporalité et localisation de l'évènement ;
- Nature et description de l'accident ;
- Nature des impacts;
- Causes profondes de l'accident suites aux analyses approfondies.

Plusieurs sources ont été utilisées pour effectuer le recensement des accidents et incidents au niveau français. Il s'agit à la fois de sources officielles, d'articles de presse locale ou de bases de données mises en place par des associations :

- Base de données ARIA du Ministère du Développement Durable, consultation en octobre 2023 ;
- Communiqués de presse du SER-FEE et/ou des exploitants éoliens ;
- Site Internet de l'association « Fédération Environnement Durable » ;
- Articles de presse divers.

Dans le cadre de ce recensement, il n'a pas été réalisé d'enquête exhaustive directe auprès des exploitants de parcs éoliens français. Cette démarche pourrait augmenter le nombre d'incidents recensés, mais cela concernerait essentiellement les incidents les moins graves.

Dans l'état actuel, la base de données élaborée par le groupe de travail de SER/FEE ayant élaboré le guide technique d'élaboration de l'étude de dangers dans le cadre des parcs éoliens apparaît comme représentative des incidents majeurs ayant affecté le parc éolien français depuis l'année 2000.

L'ensemble de ces sources permet d'arriver à un inventaire aussi complet que possible des incidents survenus en France. Un total de 112 incidents a pu être recensé entre 2000 et octobre 2023 (Annexe 2 : Tableau de l'accidentologie française).

Il apparaît dans ce recensement que les aérogénérateurs accidentés sont principalement des modèles anciens ne bénéficiant généralement pas des dernières avancées technologiques.

Le graphique suivant montre la répartition des événements accidentels et de leurs causes premières sur le parc d'aérogénérateur français entre 2000 et le premier semestre 2023.

Cette synthèse exclut les accidents du travail (maintenance, chantier de construction, etc.) et les événements qui n'ont pas conduit à des effets sur les zones autour des aérogénérateurs. Dans ce graphique sont présentés :

- La répartition des événements effondrement, rupture de pale, chute d'éléments et incendie, par rapport à la totalité des accidents observés en France. Elles sont représentées par des histogrammes de couleur foncée;
- La répartition des causes premières pour chacun des événements décrits ci-dessus. Celle-ci est donnée par rapport à la totalité des accidents observés en France. Elles sont représentées par des histogrammes de couleur claire.

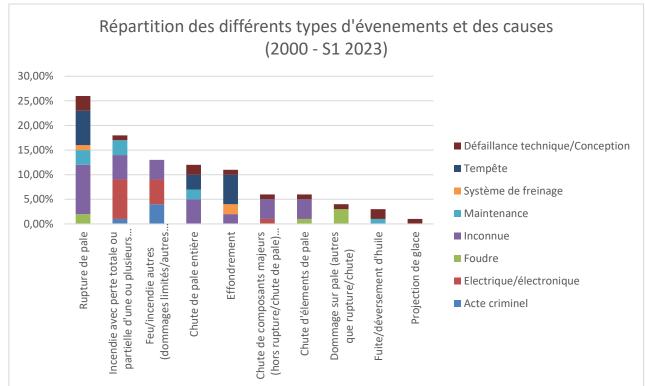


Figure 8 - Répartition des différents types d'événements et des causes (2001 - S1 2023)

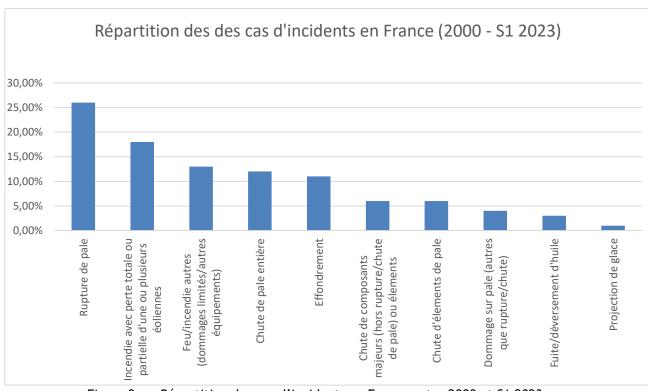


Figure 9 - Répartition des cas d'incidents en France entre 2000 et S1 2023

Etude de dangers - Version finale - 5 janvier 2024

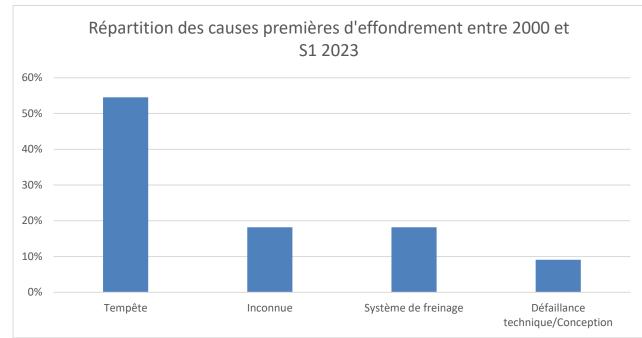


Figure 10 - Répartition des causes premières d'effondrement entre 2000 et S1 2023

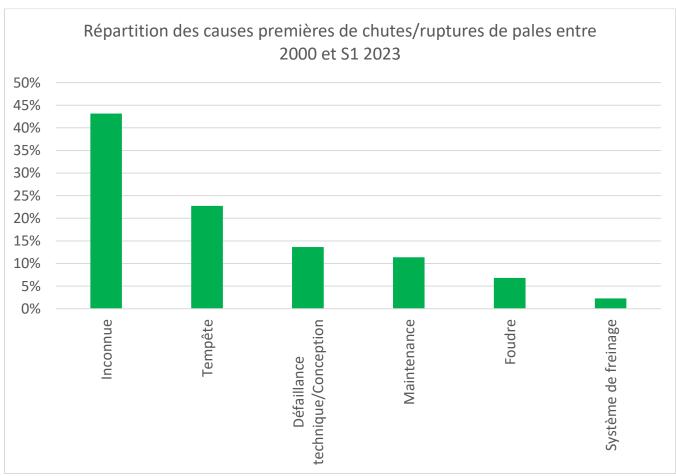


Figure 11 - Répartition des causes premières de chutes/ruptures de pales entre 2000 et S1 2023

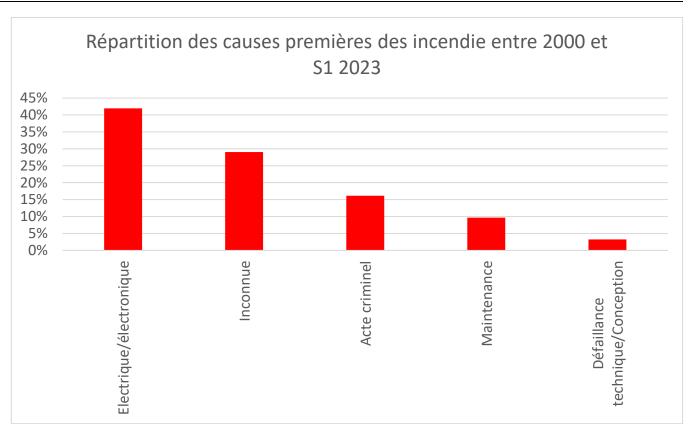


Figure 12 - Répartition des causes premières des incendies entre 2000 et S1 2023

Par ordre d'importance, les accidents les plus recensés sont les ruptures de pale, les incendies, les effondrements, les chutes de pale et les chutes des autres éléments de l'éolienne. La principale cause de ces accidents sont les tempêtes (hors incendie liés principalement à des défaillances électriques).

7.2 INVENTAIRE DES ACCIDENTS ET INCIDENTS A L'INTERNATIONAL

Un inventaire des incidents et accidents à l'international a également été réalisé. Il se base lui aussi sur le retour d'expérience de la filière éolienne au 31 Mars 2018.

La synthèse ci-dessous provient de l'analyse de la base de données réalisée par l'association Caithness Wind Information Forum (CWIF). Sur les 3 449 accidents décrits dans la base de données au moment de sa mise à jour au 30 septembre 2023, 1 298 sont considérés comme des « accidents majeurs ». Les autres concernant plutôt des accidents du travail, des presque-accidents, des incidents, etc. et ne sont donc pas pris en compte dans l'analyse suivante.

Le graphique suivant montre la répartition des événements accidentels par rapport à la totalité des accidents analysés.

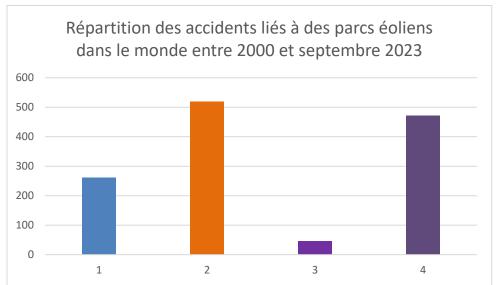
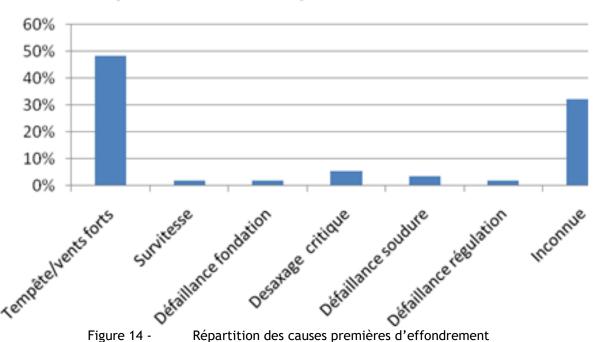



Figure 13 - Répartition des accidents liés à des parcs éoliens dans le monde entre 2000 et 2023

La répartition des évènements accidentels dans le monde entre 2000 et 2023 du même ordre de grandeur que celle qui avait été observée entre 2000 et 2011 par le groupe de travail de SER/FEE.

Ci-après, le recensement des causes premières présenté pour chacun des événements accidentels recensés (données en répartition par rapport à la totalité des accidents analysés) est celui qui porte sur les données 2000 -2011 analysées par le groupe de travail mentionné précédemment.

Répartition des causes premières d'effondrement

Répartition des causes premières de rupture de pale

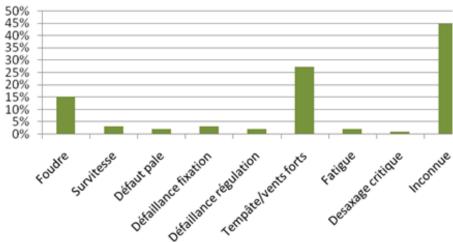


Figure 15 - Répartition des causes premières de rupture de pale

Répartition des causes premières d'incendie

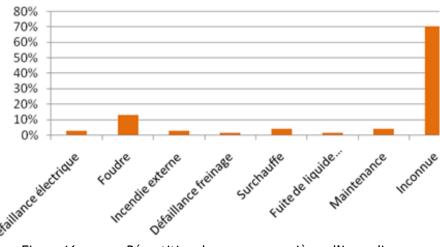


Figure 16 - Répartition des causes premières d'incendie

Tout comme pour le retour d'expérience français, ce retour d'expérience montre l'importance des causes « tempêtes et vents forts » dans les accidents. Il souligne également le rôle de la foudre dans les accidents.

7.3 INVENTAIRE DES ACCIDENTS ET INCIDENTS A L'INTERNATIONAL

La société RP GLOBAL ne dénombre aucun accident d'exploitation ou de maintenance dans les parcs exploités actuellement.

La filiale de cette société, Les Froids Vents, n'exploite à l'heure actuelle aucun parc éolien.

7.5 SYNTHESE DES PHENOMENES DANGEREUX REDOUTES ISSUS DU RETOUR D'EXPERIENCE

7.5.1 Analyse d'évolution des accidents en France

A partir de l'ensemble des phénomènes dangereux qui ont été recensés, il est possible d'étudier leur évolution en fonction du nombre d'éoliennes installées.

La figure ci-dessous montre cette évolution et il apparaît clairement que le nombre d'incidents n'augmente pas proportionnellement au nombre d'éoliennes installées. Depuis 2005, l'énergie éolienne s'est en effet fortement développée en France, mais le nombre d'incidents par an reste relativement constant.

Cette tendance s'explique principalement par un parc éolien français assez récent, qui utilise majoritairement des éoliennes de nouvelle génération, équipées de technologies plus fiables et plus sûres.

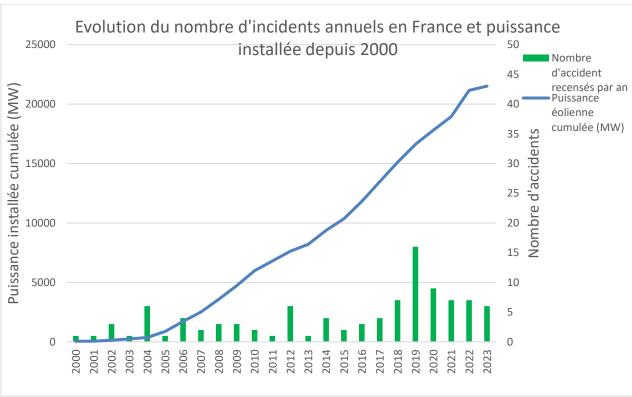


Figure 17 - Evolution du nombre d'incidents annuels et nombre d'éoliennes installées depuis 2000

Sur ce graphique, on note bien l'essor de la filière française à partir de 2005, alors que le nombre d'accidents reste relativement constant.

7.5.2 Analyse des typologies d'accidents les plus fréquents

Le retour d'expérience de la filière éolienne française et internationale permet d'identifier les principaux événements redoutés suivants :

- Effondrements;
- Ruptures de pales ;
- Chutes de pales et d'éléments de l'éolienne ;
- Incendie.

7.6 LIMITES D'UTILISATION DE L'ACCIDENTOLOGIE

Ces retours d'expérience doivent être pris avec précaution. Ils comportent notamment les biais suivants :

- <u>La non-exhaustivité des événements</u>: ce retour d'expérience, constitué à partir de sources variées, ne provient pas d'un système de recensement organisé et systématique. Dès lors certains événements ne sont pas reportés (en particulier, les événements les moins spectaculaires);
- <u>La non-homogénéité des aérogénérateurs inclus dans ce retour d'expérience</u>: les aérogénérateurs observés n'ont pas été construits aux mêmes époques et ne mettent pas en œuvre les mêmes technologies. Les informations sont très souvent manquantes pour distinguer les différents types d'aérogénérateurs (en particulier concernant le retour d'expérience mondial);
- <u>Les importantes incertitudes sur les causes et sur la séquence qui a mené à un accident</u> : de nombreuses informations sont manquantes ou incertaines sur la séquence exacte des accidents.

L'analyse du retour d'expérience permet ainsi de dégager de grandes tendances, mais à une échelle détaillée, elle comporte de nombreuses incertitudes.

L'ensemble de ces retours d'expérience est issu initialement du guide INERIS de 2011 puis régulièrement mis à jour, les incidents plus récents (relayé via la presse, la filière éolienne, etc.) ne viennent pas remettre en cause la typologie des incidents mis en évidence par l'analyse précédente.

8 ANALYSE PRELIMINAIRE DES RISQUES

8.1 OBJECTIF DE L'ANALYSE PRELIMINAIRE DES RISQUES

L'analyse des risques a pour objectif principal d'identifier les scénarios d'accident majeurs et les mesures de sécurité qui empêchent ces scénarios de se produire ou en limitent les effets. Cet objectif est atteint au moyen d'une identification de tous les scénarios d'accident potentiels pour une installation (ainsi que des mesures de sécurité) basée sur un questionnement systématique des causes et conséquences possibles des événements accidentels, ainsi que sur le retour d'expérience disponible.

Les scénarios d'accident sont ensuite hiérarchisés en fonction de leur intensité et de l'étendue possible de leurs conséquences. Cette hiérarchisation permet de « filtrer » les scénarios d'accident qui présentent des conséquences limitées et les scénarios d'accident majeurs - ces derniers pouvant avoir des conséquences sur les personnes.

8.2 RECENSEMENT DES EVENEMENTS INITIATEURS EXCLUS DE L'ANALYSE DES RISQUES

Conformément à la circulaire du 10 mai 2010, les événements initiateurs (ou agressions externes) suivants sont exclus de l'analyse des risques :

- Chute de météorite ;
- Séisme d'amplitude supérieure aux séismes maximums de référence éventuellement corrigés de facteurs, tels que définis par la réglementation applicable aux installations classées considérées ;
- Crues d'amplitude supérieure à la crue de référence, selon les règles en vigueur;
- Événements climatiques d'intensité supérieure aux événements historiquement connus ou prévisibles pouvant affecter l'installation, selon les règles en vigueur ;
- Chute d'avion hors des zones de proximité d'aéroport ou aérodrome (rayon de 2 km des aéroports et aérodromes) ;
- Rupture de barrage de classe A ou B au sens de l'article R.214-112 du Code de l'environnement ou d'une digue de classe A, B ou C au sens de l'article R. 214-113 du même code;
- Actes de malveillance.

D'autre part, plusieurs autres agressions externes qui ont été détaillées dans l'état initial peuvent être exclues de l'analyse préliminaire des risques car les conséquences propres de ces événements, en termes de gravité et d'intensité, sont largement supérieures aux conséquences potentielles de l'accident qu'ils pourraient entraîner sur les aérogénérateurs.

Le risque de suraccident lié à l'éolienne est considéré comme négligeable dans le cas des événements suivants :

- Inondations;
- Séismes d'amplitude suffisante pour entraîner des conséquences notables sur les infrastructures ;
- Incendies de cultures ou de forêts ;
- Pertes de confinement de canalisations de transport de matières dangereuses;
- Explosions ou incendies générés par un accident sur une activité voisine de l'éolienne.

8.3 RECENSEMENT DES AGRESSIONS EXTERNES POTENTIELLES

8.3.1 Agressions externes liées aux activités humaines

Seules les agressions externes liées aux activités humaines présentes dans un rayon de 200 m (distance à partir de laquelle l'activité considérée ne constitue plus un agresseur potentiel) seront recensées ici, à l'exception de :

• La présence des aérodromes qui sera reportée lorsque ceux-ci sont implantés dans un rayon de 2 km;

• La présence d'autres aérogénérateurs qui sera signalée jusqu'à une distance de 500 m.

Les distances données dans le tableau ci-après sont mesurées à partir du centre du mât.

Les distances dépassant les rayons précisés ci-dessus ne sont pas renseignées.

Infrastructure	Fonction	Evénement redouté	Danger potentiel	Danger potentiel	Danger potentiel Périmètre	Distance par rapport au mât des éoliennes (en mètres)			
					E1	E2	E3	E4	
RD 90	Transport	Accident entraînant la sortie de voie d'un ou plusieurs véhicules	Energie cinétique des véhicules et flux thermiques	200 m	/	/	205	/	
Aérodrome	Transport aérien	Chute d'aéronef	Energie cinétique de l'aéronef, flux thermique	2000 m	/	/	/	/	
Ligne THT	Transport d'électricité	Rupture de câble	Arc électrique, surtensions	200 m	/	/	/	/	
Canalisation de gaz	Transport de gaz	Rupture de canalisation	Flux thermique	200 m	/	/	/	/	
Autres aérogénérateurs	Production d'électricité	Accident générant des projections d'éléments	Energie cinétique des éléments projetés	500m	/	/	/	/	

Tableau 4. Principales agressions externes liées aux activités humaines

8.3.2 Agressions externes liées aux phénomènes naturels

Le tableau ci-dessous synthétise les principales agressions externes liées aux phénomènes naturels :

Agressions externes	Intensité
Vents et tempête	Risque équivalent à la moyenne dans le département de l'Oise
FOLIATE	Risque Faible Application de la norme IEC 61400-24
miniers	Aucun arrêté de catastrophe naturelle n'a été pris depuis près de 20 ans sur les 4 communes étudiées. Risque faible
Séisme	Le site se situe en zone de sismicité de niveau 1. Risque très faible

Tableau 5. Principales agressions externes liées aux phénomènes naturels

Le cas spécifique des effets directs de la foudre et du risque de « tension de pas » n'est pas traité dans l'analyse des risques et dans l'étude détaillée des risques dès lors qu'il est vérifié que la norme IEC 61 400-24 (Juin 2010) ou la norme EN 62 305-3 (Décembre 2006) est respectée. Ces conditions sont reprises dans la fonction de sécurité ci-après.

En ce qui concerne la foudre, on considère que le respect des normes rend le risque d'effet direct de la foudre négligeable (risque électrique, risque d'incendie, etc.).

En effet, le système de mise à la terre permet d'évacuer l'intégralité du courant de foudre. Cependant, les conséquences indirectes de la foudre, comme la possible fragilisation progressive de la pale, sont prises en compte dans les scénarios de rupture de pale.

Dossier de demande d'autorisation environnementale

8.4 SCENARIOS ETUDIES DANS L'ANALYSE PRELIMINAIRE DES RISQUES (APR)

Le tableau ci-dessous présente une proposition d'analyse générique des risques. Celui-ci est construit de la manière suivante :

- Une description des causes et de leur séquençage (événements initiateurs et événements intermédiaires) :
- Une description des événements redoutés centraux qui marquent la partie incontrôlée de la séquence d'accident ;
- Une description des fonctions de sécurité permettant de prévenir l'évènement redouté central ou de limiter les effets du phénomène dangereux ;
- Une description des *phénomènes dangereux* dont les effets sur les personnes sont à l'origine d'un accident;
- Une évaluation préliminaire de la zone d'effets attendue de ces événements.

L'échelle utilisée pour l'évaluation de l'intensité des événements a été adaptée au cas des éoliennes :

- « 1 » correspond à un phénomène limité ou se cantonnant au surplomb de l'éolienne ;
- « 2 » correspond à une intensité plus importante et impactant potentiellement des personnes autour de l'éolienne.

Les différents scénarios listés dans le tableau générique de l'APR sont regroupés et numérotés par thématique, en fonction des typologies d'évènement redoutés centraux identifiés grâce au retour d'expérience groupe de travail précédemment cité (« G » pour les scénarios concernant la glace, « I » pour ceux concernant l'incendie, « F » pour ceux concernant les fuites, « C » pour ceux concernant la chute d'éléments de l'éolienne, « P » pour ceux concernant les risques de projection, « E »pour ceux concernant les risques d'effondrement).

Dossier de demande d'autorisation environnementale

N°	Evénement initiateur	Evénement intermédiaire	Evénement redouté central	Fonction de sécurité (intitulé générique)	Phénomène dangereux	Qualification de la zone d'effet
G01	Conditions climatiques favorables à la formation de glace	Dépôt de glace sur les pales, le mât et la nacelle	Chute de glace lorsque les éoliennes sont arrêtées	Prévenir l'atteinte des personnes par la chute de glace (N°2)	Impact de glace sur les enjeux	1
G02	Conditions climatiques favorables à la formation de glace	Dépôt de glace sur les pales	Projection de glace lorsque les éoliennes sont en mouvement	Prévenir la mise en mouvement de l'éolienne lors de la formation de la glace (N°1)	Impact de glace sur les enjeux	2
I01	Humidité / Gel	Court-circuit	Incendie de tout ou partie de l'éolienne	Prévenir les courts circuits (N°5)	Chute/projection d'éléments enflammés Propagation de l'incendie	2
102	Dysfonctionnement électrique	Court-circuit	Incendie de tout ou partie de l'éolienne	Prévenir les courts circuits (N°5)	Chute/projection d'éléments enflammés Propagation de l'incendie	2
103	Survitesse	Echauffement des parties mécaniques et inflammation	Incendie de tout ou partie de l'éolienne	Prévenir l'échauffement significatif des pièces mécaniques (N°3) Prévenir la survitesse (N°4)	Chute/projection d'éléments enflammés Propagation de l'incendie	2
104	Désaxage de la génératrice / Pièce défectueuse /Défaut de lubrification	Echauffement des parties mécaniques et inflammation	Incendie de tout ou partie de l'éolienne	Prévenir l'échauffement significatif des pièces mécaniques (N°3)	Chute/projection d'éléments enflammés Propagation de l'incendie	2
105	Conditions climatiques humides	Surtension	Court-circuit	Prévenir les courts circuits (N°5) Protection et Intervention incendie (N°7)	Incendie poste de livraison (flux thermiques + fumées toxiques SF6) Propagation de l'incendie	2
106	Rongeur	Surtension	Court-circuit	Prévenir les courts circuits (N°5) Protection et intervention incendie (N°7)	Incendie poste de livraison (flux thermiques +fumées toxiquesSF6) Propagation de l'incendie	2
107	Défaut d'étanchéité	Perte de confinement	Fuites d'huile isolante	Prévention et rétention des fuites (N°8)	Incendie au poste de transformation Propagation de l'incendie	2
F01	Fuite système de lubrification Fuite convertisseur Fuite transformateur	Ecoulement hors de la nacelle et le long du mât, puis sur le sol avec infiltration	Infiltration d'huile dans le sol	Prévention et rétention des fuites (N°8)	Pollution environnement	1
F02	Renversement de fluides lors des opérations de maintenance	Ecoulement	Infiltration d'huile dans le sol	Prévention et rétention des fuites (N°8)	Pollution environnement	1
C01	Défaut de fixation	Chute de trappe	Chute d'élément de l'éolienne	Prévenir les erreurs de maintenance (N°10)	Impact sur cible	1
C02	Défaillance fixation anémomètre	Chute anémomètre	Chute d'élément de l'éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction - exploitation) (N° 9)	Impact sur cible	1
C03	Défaut fixation nacelle - pivot central - mât	Chute nacelle	Chute d'élément de l'éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction -exploitation) (N° 9)	Impact sur cible	1
P01	Survitesse	Contraintes trop importantes sur les pales	Projection de tout ou partie d'une pale	Prévenir la survitesse (N°4)	Impact sur cible	2
P02	Fatigue Corrosion	Chute de fragment de pale	Projection de tout ou partie d'une pale	Prévenir la dégradation de l'état des équipements (N°11)	Impact sur cible	2
P03	Serrage inapproprié Erreur maintenance - desserrage	Chute de fragment de pale	Projection de tout ou partie d'une pale	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction - exploitation) (N° 9)	Impact sur cible	2
E01	Effets dominos autres installations	Agression externe et fragilisation structure	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction - exploitation) (N° 9)	Projection/chute fragments et chute mât	2
E02	Glissement de sol	Agression externe et fragilisation structure	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction - exploitation) (N° 9)	Projection/chute fragments et chute mât	2
E05	Crash d'aéronef	Agression externe et fragilisation structure	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction - exploitation) (N° 9)	Projection/chute fragments et chute mât	2
E07	Effondrement engin de levage travaux	Agression externe et fragilisation structure	Effondrement éolienne	Actions de prévention mises en œuvre dans le cadre du plan de prévention (N°13)	Chute fragments et chute mât	2
E08	Vents forts	Défaillance fondation	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction - exploitation) (N° 9) Prévenir les risques de dégradation de l'éolienne en cas de vent fort (N° 12) Dans les zones cycloniques, mettre en place un système de prévision cyclonique et équiper les éoliennes d'un dispositif d'abattage et d'arrimage au sol (N° 13)	Projection/chute fragments et chute mât	2
E09	Fatigue	Défaillance mât	Effondrement éolienne	Prévenir la dégradation de l'état des équipements (N°11)	Projection/chute fragments et chute mât	2
E10	Désaxage critique du rotor	Impact pale - mât	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction - exploitation) (N°9) Prévenir les erreurs de maintenance (N°10)	Projection/chute fragments et chute mât	2

Ce tableau présentant le résultat d'une analyse des risques peut être considéré comme représentatif des scénarios d'accident pouvant potentiellement se produire sur les éoliennes.

8.5 EFFETS DOMINOS

Lors d'un accident majeur sur une éolienne, une possibilité est que les effets de cet accident endommagent d'autres installations. Ces dommages peuvent conduire à un autre accident. Par exemple, la projection de pale impactant les canalisations d'une usine à proximité peut conduire à des fuites de canalisations de substances dangereuses.

Ce phénomène est appelé « effet domino ».

Les effets dominos susceptibles d'impacter les éoliennes sont décrits dans le tableau d'analyse des risques générique présenté ci-dessus.

En ce qui concerne les accidents sur des aérogénérateurs qui conduiraient à des effets dominos sur d'autres installations, le paragraphe 1.2.2 de la circulaire du 10 mai 2010 précise : « [...] seuls les effets dominos générés par les fragments sur des installations et équipements proches ont vocation à être pris en compte dans les études de dangers [...].

Pour les effets de projection à une distance plus lointaine, l'état des connaissances scientifiques ne permet pas de disposer de prédictions suffisamment précises et crédibles de la description des phénomènes pour déterminer l'action publique ».

C'est la raison pour laquelle, il est proposé de négliger les conséquences des effets dominos dans le cadre de la présente étude.

Dans le cadre des études de dangers éoliennes, il est proposé de limiter l'évaluation de la probabilité d'impact d'un élément de l'aérogénérateur sur une autre installation ICPE que lorsque celle-ci se situe dans un rayon de 100 mètres.

Ainsi, aucune éolienne et aucune autre installation ICPE ne se trouve à moins de 100 mètres des éoliennes du parc éolien Les Froids Vents.

8.6 MISE EN PLACE DES MESURES DE SECURITE

La troisième étape de l'analyse préliminaire des risques consiste à identifier les éléments de sécurité installées sur les aérogénérateurs et qui interviennent dans la prévention et/ou la limitation des phénomènes dangereux listés dans le tableau APR et de leurs conséquences.

Un principe clé du processus d'élaboration d'une étude de dangers est qu'elle doit être proportionnelle au niveau de risques engendrés par les éoliennes sur leur environnement.

Dans ce cadre, il est réalisé une description simple des mesures de sécurité mises en œuvre sur les machines. En particulier, les analyses poussées demandées aux installations classées soumise à autorisation avec servitudes (AS) ne seront pas menées ici.

Les tableaux suivants ont pour objectif de synthétiser les fonctions de sécurité identifiées et mise en œuvre sur les éoliennes du parc Les Froids Vents. Dans le cadre de la présente étude de dangers, les fonctions de sécurité sont détaillées selon les critères suivants :

Fonction de sécurité: il est proposé ci-dessous un tableau par fonction de sécurité. Cet intitulé décrit l'objectif de la ou des mesure(s) de sécurité: il s'agira principalement de « empêcher, éviter, détecter, contrôler ou limiter » et sera en relation avec un ou plusieurs événements conduisant à un accident majeur identifié dans l'analyse des risques. Plusieurs mesures de sécurité peuvent assurer une même fonction de sécurité;

Numéro de la fonction de sécurité : ce numéro vise à simplifier la lecture de l'étude de dangers en permettant des renvois à l'analyse de risque par exemple ;

Mesures de sécurité : cette ligne permet d'identifier les mesures assurant la fonction concernée. Dans le cas de systèmes instrumentés de sécurité, tous les éléments de la chaîne de sécurité sont présentés (détection + traitement de l'information + action) ;

Description: cette ligne permet de préciser la description de la mesure de maîtrise des risques, lorsque des détails supplémentaires sont nécessaires;

Indépendance (« oui » ou « non ») : cette caractéristique décrit le niveau d'indépendance d'une mesure de maîtrise des risques vis-à-vis des autres systèmes de sécurité et des scénarios d'accident. Cette condition peut être considérée comme remplie (renseigner « oui ») ou non (renseigner « non ») ;

Temps de réponse (en secondes ou en minutes) : cette caractéristique mesure le temps requis entre la sollicitation et l'exécution de la fonction de sécurité ;

Efficacité (100% ou 0%) : l'efficacité mesure la capacité d'une mesure de maîtrise des risques à remplir la fonction de sécurité qui lui est confiée pendant une durée donnée et dans son contexte d'utilisation ;

Test (fréquence): dans ce champ sont rappelés les tests/essais qui seront réalisés sur les mesures de maîtrise des risques. Conformément à la réglementation, un essai d'arrêt, d'arrêt d'urgence et d'arrêt à partir d'une situation de survitesse seront réalisés avant la mise en service de l'aérogénérateur. Dans tous les cas, les tests effectués sur les mesures de maîtrise des risques seront tenus à la disposition de l'inspection des installations classées pendant l'exploitation de l'installation;

Maintenance (fréquence) : ce critère porte sur la périodicité des contrôles qui permettront de vérifier la performance de la mesure de maîtrise des risques dans le temps. Pour rappel, la réglementation demande qu'à minima : un contrôle tous les ans soit réalisé sur la performance des mesures de sécurité permettant de mettre à l'arrêt, à l'arrêt d'urgence et à l'arrêt à partir d'une situation de survitesse et sur tous les systèmes instrumentés de sécurité.

Fonction de sécurité	Prévenir la mise en mouvement de l'éolienne lors de la formation de glace	N° de la fonction de sécurité	1
Mesures de sécurité Système de détection ou de givre sur les pales de l'aérogénérateur par paramètres de puissance). Temps de redémarrage automatique échelonné en fonction de la temp			
Description	Deux sondes mesurent la température de l'air en nacelle et en pied du mât, afin de dét si les conditions sont propices à la formation de givre. La présence de glace ou de givre modifie les caractéristiques aérodynamiques de la entraînant une dégradation de la courbe de puissance. Lorsque la température est infér à 2°C la courbe de puissance à l'instant t est comparée à la courbe de puissance de l'éoli en condition normale. Une plage de tolérance est définie et les points en dehors de la plage de tolérance comptabilisés. A partir d'un certain nombre (donnée paramétrable) de points enregistrés de la plage de tolérance, l'éolienne s'arrête automatiquement.		iques de la pale ure est inférieure nce de l'éolienne e tolérance sont
Indépendance	à l'exploitation du parc. e		
Temps de réponse			
Efficacité	100 %		
Tests	Tests menés par le concepteur au moment de la construction de l'éolienne.		
Maintenance	Vérification des capteurs du système de détection de givre lors des maintenances prévent annuelles		inces préventives

Fonction de sécurité	Prévenir la mise en mouvement de l'éolienne lors de la formation de glace	N° de la fonction de sécurité	1-b	
Mesures de sécurité	Système de détection de glace sur la nacelle.			
Description	Un Système est composé d'une sonde vibratoire installée sur la nacelle, permettant d'alerter les opérateurs dès que l'accumulation de glace dépasse un certain niveau. Ce dispositif détecte la formation de glace sur la nacelle, et donc par déduction sur les pales. Lorsqu'il y a détection, la mise à l'arrêt de la turbine est automatique ou manuelle, après vérification de la glace formée, selon le type de configuration demandé.			
Indépendance	Oui			
Temps de réponse	Temps de détection de l'ordre de la seconde Mise en pause de la turbine < 1 min 100% NA			
Efficacité				
Tests				
Maintenance	Le système de détection est supervisé par les contrôleurs de la machine. Un warning est envoyé via le SCADA en cas de défaut => maintenance de remplacement en cas de dysfonctionnement de l'équipement			

Fonction de sécurité	Prévenir l'atteinte des personnes par la chute de glace	N° de la fonction de sécurité	2
Mesures de	Panneautage en pied de machine ainsi que sur	les voies d'accès au parc.	
sécurité	Eloignement des zones habitées et fréquentées	i.	
Description	Mise en place de panneaux informant de la possible formation de glace en pied de machines (conformément à l'article 14 de l'arrêté du 26 août 2011). Oui Non Applicable (NA) 100 %. Nous considérerons que compte tenu de l'implantation des panneaux et de l'entretien prévu, l'information des promeneurs sera systématique. NA		
Indépendance			
Temps de réponse			
Efficacité			
Tests			
Maintenance	Vérification de l'état général du panneau, de l'absence de détérioration, entretien végétation afin que le panneau reste visible.		entretien de la

Fonction de sécurité	Prévenir l'échauffement significatif des pièces mécaniques	N° de la fonction de sécurité	3	
Mesures de sécurité	Capteurs de température des pièces mécaniques. Définition de seuils critiques de température pour chaque type de composant avec alarmes. Mise à l'arrêt ou bridage jusqu'à refroidissement.			
Description	Des sondes de température sont mises en place sur les équipements ayant de fortes variations de température au cours de leur fonctionnement (paliers et roulements des machines tournantes, enroulements du générateur et du transformateur). Ces sondes ont des seuils hauts qui, une fois dépassés, conduisent à une alarme et à une mise à l'arrêt du rotor.			
Indépendance	Oui			
Temps de réponse	NA NA			
Efficacité	100 %			
Tests	Tests menés par le concepteur au moment de la	a construction de l'éolienne.		
Contrôle automatique permanent grâce à des redondances pour les capteurs des principal composants (génératrices, transformateur). Maintenance Lors de la maintenance annuelle, vérification de la vraisemblance des informations donné par les capteurs par lecture sur le moniteur. Maintenance de remplacement en cas de dysfonctionnement de l'équipement.		nations données		

Fonction de sécurité	Prévenir la survitesse	N° de la fonction de sécurité	4		
Mesures de	Détection de survitesse et système de freinage.				
sécurité	Eléments du système de protection contre la	survitesse conformes aux no	rmes IEC 61508		
Securite	(SIL 2) et EN 954-1				
	Systèmes de coupure s'enclenchant en cas de (dépassement des seuils de vit	tesse prédéfinis,		
	indépendamment du système de contrôle comr	nande.			
	NB : Le système de freinage est constitué d	'un frein aérodynamique pri	ncipal (mise en		
Description	drapeau des pales) et/ou d'un frein mécanique	auxiliaire.			
	Le système coupe l'alimentation électrique des pitch. Les condensateurs électriques du				
système de sécurité des <u>pitchs</u> se déchargent alors, activant la mise en dr			peau des pales.		
	L'éolienne s'arrête en 10 à 15 secondes.				
Indépendance	Oui				
	15 à 60s (arrêt de l'éolienne selon le programn	ne de freinage adapté)			
Temps de	L'exploitant ou l'opérateur désigné sera en 1	mesure de transmettre l'aler	te aux services		
réponse	d'urgence compétents dans un délai de 15	minutes suivant l'entrée en	fonctionnement		
	anormal de l'aérogénérateur conformément au	x dispositions de l'arrêté du 2	26 août 2011.		
Efficacité	100 %				
	Test d'arrêt simple, d'arrêt d'urgence et de la p	rocédure d'arrêt en cas de su	rvitesse avant la		
Tests	mise en service des aérogénérateurs conformén	nent à l'article 15 de l'arrêté d	u 26 août 2011.		
	Un test de survitesse est également effectué lors de la mise en service de l'installation				
	Vérification du système au bout de 3 mois de fonctionnement puis contrôle annuel				
Maintenance	conformément à l'article 18 de l'arrêté du 26 août 2011 (notamment de l'usure du frein et				
	de pression du circuit de freinage d'urgence).				
	Maintenance de remplacement en cas de dysfonctionnement de l'équipement.				

Fonction de sécurité	Prévenir les courts-circuits	N° de la fonction de sécurité	5	
Mesures de	Coupure de la transmission électrique en cas o	de fonctionnement anormal d	l'un composant	
sécurité	électrique.			
Description	Les organes et armoires électriques de l'éolienne sont équipés d'organes de coupures et de protection adéquats et correctement dimensionnés. Tout fonctionnement anormal des composants électriques est suivi d'une coupure de la transmission électrique et à la transmission d'un signal d'alerte vers l'exploitant qui prend alors les mesures appropriées. Les systèmes électriques sont équipés de disjoncteurs à tous les niveaux.			
Indépendance	Oui			
Temps de	De l'ordre de la seconde			
réponse	De Lordie de la Secolide			
Efficacité	100 %			
Tests	/			
Maintenance	Des vérifications de tous les composants électriques ainsi que des mesures d'isolement de serrage des câbles sont intégrées dans la plupart des mesures de maintenance préventi mises en œuvre annuellement. Les installations électriques sont contrôlées avant la mise en service du parc puis à u fréquence annuelle, conformément à l'article 10 de l'arrêté du 26 août 2011.		ance préventive parc puis à une	

Fonction de sécurité	Prévenir les effets de la foudre	N° de la fonction de sécurité	6
Mesures de sécurité	Mise à la terre et protection des éléments de l'a	érogénérateur.	
Description	Système de protection foudre de l'éolienne dimensionné pour prévenir toute dégradation des pales de l'éolienne conformément à la norme IEC 61 400 – 24 (juin 2010) Pour la protection parafoudre extérieure, on note la présence de parafoudres sur la nacelle. La pointe de la pale est en aluminium moulé, et un profilé conducteur est relié par un anneau en aluminium à la base de la pale. Un coup de foudre est absorbé en toute sécurité par ces profilés et le courant de foudre est dévié vers la terre entourant la base de l'éolienne. L'anémomètre est protégé et entouré d'un arceau métallique. Pour la protection parafoudre interne, des parasurtenseurs sont installés et protègent les circuits électriques tels que l'armoire de contrôle et la génératrice. Toutes les autres platines possédant leur propre alimentation sont équipées de filtres à hautes absorptions. Aussi, la partie télécommunication est protégée par des parasurtenseurs insensibilité à ces surtensions atmosphériques ou de réseau.		
Indépendance	Oui		
Temps de réponse	Immédiat dispositif passif		
Efficacité	100 %		
Tests	Mesure de mise à la terre lors des vérifications	réglementaires des installatio	ns électriques.
Maintenance	Contrôle visuel des pales et des éléments susci dans les opérations de maintenance, conformén Contrôle de l'état de l'installation de mise à l préventive.	nent à l'article 9 de l'arrêté du	ı 26 août 2011.

Fonction de sécurité	Protection et intervention incendie	N° de la fonction de sécurité	7	
Mesures de sécurité	Capteurs de températures sur les principaux composants de l'éolienne pouvant permettr en cas de dépassement des seuils, la mise à l'arrêt de la machine. Système de détection fumée relié au système SCADA qui émet une alarme au centre contrôle et prévient l'exploitant par SMS. Intervention des services de secours.			
Description	De nombreux capteurs de températures sont présents à proximité de tous les composa critiques (nacelle, génératrice, palier du moyeu, mât, armoires électriques, transformateu ventilateurs et éléments chauffants, extérieur de la machine). L'éolienne est égalem équipée d'extincteur. Des seuils d'acceptabilité de niveau de températures sont prédéfi dans le système de contrôle de l'éolienne pour chacun des capteurs. Des capteurs optiques de fumée sont placés en pied de mât et dans la nacelle. Li déclenchement conduit à la mise en arrêt de la machine et au découplage du rési électrique. De manière concomitante, un message d'alarme est envoyé au centre télésurveillance ainsi qu'à l'exploitant par SMS, qui se charge de contacter les servi d'urgence compétents. Plan d'intervention avec le SDIS.		ansformateurs, est également sont prédéfinis a nacelle. Leur age du réseau au centre de	
Indépendance	Oui			
Temps de réponse	' I délai de 15 minutes suivant l'entrée en fonctionnement anormal		étents dans un ogénérateur. Le	
Efficacité	100 %			
Tests	Les capteurs optiques de fumée sont testés ani	nuellement (détection volonta	ire)	
Maintenance	Vérification du système au bout de 3 mois de fonctionnement puis contrôle conformément à l'article 18 de l'arrêté du 26 août 2011. Le matériel incendie (type extincteurs) est contrôlé périodiquement par le fabriqu matériel ou un organisme extérieur. Maintenance curative à la suite d'une défaillance du matériel.			

Fonction de sécurité	Prévention et rétention des fuites	N° de la fonction de sécurité	8	
Mesures de sécurité	Utilisation d'une très faible quantité d'huile (absence de boite de vitesse) Systèmes d'étanchéité et dispositifs de collecte / récupération pour les composants critiques Détecteurs de niveau d'huiles / Kit antipollution Nombreux détecteurs de niveau d'huile permettant de détecter les éventuelles fuites d'huile et d'arrêter l'éolienne en cas d'urgence			
Description	et d'arrêter l'éolienne en cas d'urgence. Présence de plusieurs bacs collecteurs au niveau des principaux composants. Les opérations de vidange font l'objet de procédures spécifiques. Dans tous les cas, le transfert des huiles s'effectue de manière sécurisée et encadrée par les procédures de maintenance. La propreté de rétentions est vérifiée lors de chaque inspection de la nacelle. Des kits de dépollution d'urgence composés de grandes feuilles de textile absorbant pourront être utilisés afin : De contenir et arrêter la propagation de la pollution ; D'absorber jusqu'à 20 litres de déversements accidentels de liquides (huile, eau, alcools) et produits chimiques (acides, bases, solvants) ; De récupérer les déchets absorbés. Si ces kits de dépollution s'avèrent insuffisants, une société spécialisée récupérera et			
L-464	traitera le gravier souillé via les filières adéq revêtement.	outes, pais te templaceia pe		
Indépendance Temps de	Oui			
réponse	Dépendant du débit de fuite			
Efficacité	100 %			
Tests	1			
Maintenance	Vérification du système au bout de 3 mois de fonctionnement Inspection des niveaux d'huile plusieurs fois par an et de l'état des rétentions plusieurs fois par an. Contrôles visuels fréquents			

	Fonction de sécurité	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation)	N° de la fonction de sécurité	9
		Contrôles réguliers des fondations et des diffe	érentes pièces d'assemblages	(ex : brides ;
	Mesures de	joints, etc.).		
	sécurité	Procédures qualités.		
		Attestation du contrôle technique (procédure p	ermis de construire).	
	Description Indépendance	La norme IEC 61 400-1 « Exigence pour la conception des aérogénérateurs » fixe les prescriptions propres à fournir « un niveau approprié de protection contre les dommages résultant de tout risque durant la durée de vie » de l'éolienne. Ainsi la nacelle, le moyeu, les fondations et la tour répondent au standard IEC 61 400-1. Les pales respectent le standard IEC 61 400-1; 12; 23. Les éoliennes sont protégées contre la corrosion due à l'humidité de l'air, selon la norme ISO 9223 (peinture et revêtement anti-corrosion).		
	Temps de	NA		
	réponse			
	Efficacité	100 %		
	Tests	NA		
Maintenance		Les couples de serrage (brides sur les diverses des pales au moyeu, bride de raccordement du éléments du pitch system, couronne du Yaw boulons de fixation de la nacelle) sont vérifié l'an et enfin tous les 3 ans, conformément à l'a Inspection visuelle du mât et, si besoin, net annuelles.	u moyeu à l'arbre lent, élémer Gear (moteur d'orientation e s au bout de 3 mois de fonction article 18 de l'arrêté du 26 aoû	nts du châssis, de la nacelle), onnement puis ût 2011.

Fonction de sécurité	Prévenir les erreurs de maintenance	N° de la fonction de sécurité	10
Mesures de sécurité	Procédure maintenance.		
Description	Préconisations du manuel de maintenance. Formation du personnel.		
Indépendance	Oui		
Temps de réponse	NA		
Efficacité	100 %		
Tests	Il existe des manuels de maintenance spécifique Tout personnel amené à intervenir dans les éol Electriquement, selon son niveau de colon de la colon del colon de la colon de la colon del colon de la colon de	iennes est formé et habilité : onnaissance vacuation et sauvetage ement suivant la réglemen afin de vérifier la validité de co es procédures sont effectués a	itation ou les es habitations. avec l'ensemble
Maintenance	NA		

Fonction de	Prévenir les risques de dégradation	N° de la fonction de	11						
sécurité	de l'éolienne en cas de vent fort	sécurité	11						
	Classe d'éolienne adaptée au site et au régime de vents.								
Mesures de	Détection et prévention des vents forts et tempêtes.								
sécurité	Déclenchement du mode tempête : arrêt automatique et diminution de la prise au vent de								
	l'éolienne (mise en drapeau progressive des pâ	les) par le système de conduit	te.						
	Procédure « site vérification » : une étude de	vent est menée sur un an	afin de vérifier						
	l'adéquation effective des machines. En cas de	doute sur l'adéquation des aé	rogénérateurs,						
Description	le site est modélisé et une étude de charge est	effectuée.							
Description	Le mode tempête s'enclenche au-delà d'une cer	taine vitesse de vent, permett	ant à l'éolienne						
	de continuer à produire mais à puissance rédu	ite. L'éolienne est mise à l'ar	rêt si la vitesse						
	de vent mesurée dépasse la vitesse maximale p	our laquelle elle a été conçue	<u>.</u>						
	Oui : ces systèmes s'appuient sur des fonctions	s et des appareils propres à l'	exploitation du						
Indépendance	parc. Ces données sont cependant analysées	par l'automate de sécurité	embarqué sur						
	chaque éolienne, dont le rôle est dédié à la séc	urité de l'installation.							
Temps de	15 à 60 s suivant le programme de freinage								
réponse	15 a 60 3 salvant le programme de fremage								
	100 % – NB : En fonction de l'intensité attendue	des vents, d'autres dispositifs	s de diminution						
Efficacité	de la prise au vent de l'éolienne peuvent être e	-							
	machines trop rapprochées entre elles, il est pos	_	arrêts sectoriels						
	pour limiter l'impact de la turbulence sur les m								
	Test des programmes de freinage lors de la mis								
Tests	Procédure de « Site Vérification » (contrôle de	l'adéquation par rapport à d	les mesures de						
	fonctionnement)								
	Les paramètres d'entrée en cas d'arrêt de sector								
	lors des modifications d'hardware ou de software. L'usure de l'éolienne est contrô								
	chaque maintenance. Maintenance préventive d								
Maintenance suivant le type de maintenance - T1 / T2 / T3 / T4), notamment vérification du câl du système de lubrification automatique, graissage des roulements de pitch. Maintenance préventive du frein mécanique (les points contrôlés varient suivant le maintenance - T1 / T2 / T3 / T4), notamment inspection visuelle, vérification de l'ép									
							des plaquettes de frein et des capteurs du frein	mécanique.	

Fonction de sécurité	Prévenir les risques de dégradation de l'éolienne par la surveillance de paramètres clés	N° de la fonction de sécurité	12	
Mesures de sécurité	Capteurs de vibrations entrainant un arrêt de l'éolienne Capteurs de bruit Contrôle de l'entrefer			
Description	Deux capteurs sont placés dans la nacelle pour détecter les accélérations longitudinales et transversales. Au-delà d'une certaine limite (spécifique à chaque modèle d'éolienne) l'éolienne s'arrête puis redémarre automatiquement après un court délai. Si plusieurs niveaux d'oscillation au-delà du seuil d'acceptabilité sont enregistrés au cours d'une période de 24h, le redémarrage automatique est suspendu. L'espace entre le rotor et le stator appelé entrefer ne doit pas être réduit en deçà d'une largeur minimum. Des capteurs mesurent cette largueur et si un certain seuil est atteint, l'éolienne s'arrête puis redémarre automatiquement après un court délai. Si la faute se répète plus d'une fois en 24h, le redémarrage automatique est suspendu. Un capteur de bruit est positionné dans la tête du rotor. En cas de bruits correspondant à des chocs importants (détachement ou rupture d'une pièce) et que la cause ne peut être			
Indépendance	Oui Les signaux des capteurs sont traités par l'automate de sécurité embarqué sur chaque éolienne, dont le rôle dédié à la sécurité de l'installation.			
Temps de réponse	Quelques secondes (<2 min)			
Efficacité	100%			
Tests	Les protocoles de maintenance annuelle prévoient la vérification de chacun de ces capteurs.			
Maintenance	NA			

L'ensemble des procédures de maintenance et des contrôles d'efficacité des systèmes sera conforme à l'arrêté du 26 août 2011.

Notamment, suivant une périodicité qui ne peut excéder un an, l'exploitant réalise une vérification de l'état fonctionnel des équipements de mise à l'arrêt, de mise à l'arrêt d'urgence et de mise à l'arrêt depuis un régime de survitesse en application des préconisations du constructeur de l'aérogénérateur.

8.7 CONCLUSION DE L'ANALYSE PRELIMINAIRE DES RISQUES

Dans le cadre de l'analyse préliminaire des risques génériques des parcs éoliens, quatre catégories de scénarios sont a priori exclues de l'étude détaillée, en raison de leur faible intensité :

Nom du scénario exclu	Justification
Incendie de l'éolienne (effets thermiques)	En cas d'incendie de nacelle, et en raison de la hauteur des nacelles, les effets thermiques ressentis au sol seront mineurs. Par exemple, dans le cas d'un incendie de nacelle située à 50 mètres de hauteur, la valeur seuil de 3 kW/m² n'est pas atteinte. Dans le cas d'un incendie au niveau du mât les effets sont également mineurs et l'arrêté du 26 Août 2011 encadre déjà largement la sécurité des installations. Ces effets ne sont donc pas étudiés dans l'étude détaillée des risques. Néanmoins il peut être redouté que des chutes d'éléments (ou des projections) interviennent lors d'un incendie. Ces effets sont étudiés avec les projections et les chutes d'éléments.
Incendie du poste de livraison ou du transformateur	En cas d'incendie de ces éléments, les effets ressentis à l'extérieur des bâtiments (poste de livraison) seront mineurs ou inexistants du fait notamment de la structure en béton. De plus, la réglementation encadre déjà largement la sécurité de ces installations (l'arrêté du 26 août 2011 [9] et impose le respect des normes NFC 15-100, NFC 13-100 et NFC 13-200) Tout comme les éoliennes, les postes de livraison disposent tous d'un système de sécurité permettant la détection d'un incendie et la transmission continue de données à l'exploitant. En cas de détection d'un incendie dans un poste de livraison, le système d'alarme informe automatiquement l'exploitant du problème, et l'ensemble des éoliennes du parc éolien sont automatiquement mises à l'arrêt tel que décrit dans la fonction de sécurité n°12 « Empêcher la perte de contrôle de l'éolienne en cas de défaillance réseau ».
Chute et projection de glace dans les cas particuliers où les températures hivernales ne sont pas inférieures à 0°C	Lorsqu'un aérogénérateur est implanté sur un site où les températures hivernales ne sont pas inférieures à 0°C, il peut être considéré que le risque de chute ou de projection de glace est nul. Des éléments de preuves doivent être apportés pour identifier les implantations où de telles conditions climatiques sont applicables. Ce cas ne s'applique pas au secteur du projet des Froids Vents.
Infiltration d'huile dans le sol	En cas d'infiltration d'huiles dans le sol, les volumes de substances libérées dans le sol restent mineurs. Ce scénario peut ne pas être détaillé dans le chapitre de l'étude détaillée des risques sauf en cas d'implantation dans un périmètre de protection rapprochée d'une nappe phréatique.

L'ensemble des procédures de maintenance et des contrôles d'efficacité des systèmes sera conforme à l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020.

Notamment, suivant une périodicité qui ne peut excéder un an, l'exploitant réalise une vérification de l'état fonctionnel des équipements de mise à l'arrêt, de mise à l'arrêt d'urgence et de mise à l'arrêt depuis un régime de survitesse en application des préconisations du constructeur de l'éolienne.

Les cinq catégories de scénarii étudiées dans l'étude détaillée des risques sont les suivantes :

- Effondrement de l'éolienne ;
- Chute de glace ;
- Chute d'éléments de l'éolienne ;
- Projection de tout ou une partie de pale ;
- Projection de glace.

Ces scénarii regroupent plusieurs causes et séquences d'accident. En estimant la probabilité, gravité, cinétique et intensité de ces événements, il est possible de caractériser les risques pour toutes les séquences d'accidents.

<u>Pour le scénario suivant</u>: Effondrement de l'éolienne, chute ou projection d'élément de l'éolienne sur un poste de livraison, le guide INERIS précise que les expertises réalisées ont montré l'absence d'effet à l'extérieur des postes de livraison pour chacun des phénomènes dangereux potentiels pouvant l'affecter. Ce scénario n'est donc pas développé dans le présent rapport.

9 ETUDE DETAILLEE DES RISQUES

L'étude détaillée des risques vise à caractériser les scénarios retenus à l'issue de l'analyse préliminaire des risques en termes de probabilité, cinétique, intensité et gravité. Son objectif est donc de préciser le risque généré par l'installation et d'évaluer les mesures de maîtrise des risques mises en œuvre. L'étude détaillée permet de vérifier l'acceptabilité des risques potentiels générés par l'installation.

9.1 RAPPEL DES DEFINITIONS

Les règles méthodologiques applicables pour la détermination de l'intensité, de la gravité et de la probabilité des phénomènes dangereux sont précisées dans l'arrêté ministériel du 29 septembre 2005.

Cet arrêté ne prévoit de détermination de l'intensité et de la gravité que pour les effets de surpression, de rayonnement thermique et de toxique.

Cet arrêté est complété par la circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003.

Cette circulaire précise en son point 1.2.2 qu'à l'exception de certains explosifs pour lesquels les effets de projection présentent un comportement caractéristique à faible distance, les projections et chutes liées à des ruptures ou fragmentations ne sont pas modélisées en intensité et gravité dans les études de dangers.

Force est néanmoins de constater que ce sont les seuls phénomènes dangereux susceptibles de se produire sur des éoliennes.

Afin de pouvoir présenter des éléments au sein de cette étude de dangers, il est proposé de recourir à la méthode ad hoc préconisée par le guide technique nationale relatif à l'étude de dangers dans le cadre d'un parc éolien dans sa version de mai 2012. Cette méthode est inspirée des méthodes utilisées pour les autres phénomènes dangereux des installations classées, dans l'esprit de la loi du 30 juillet 2003.

Cette première partie de l'étude détaillée des risques consiste donc à rappeler les définitions de chacun de ces paramètres, en lien avec les références réglementaires correspondantes.

9.1.1 Cinétique

La cinétique d'un accident est la vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables.

Selon l'article 8 de l'arrêté du 29 septembre 2005 [13], la cinétique peut être qualifiée de « lente » ou de « rapide ». Dans le cas d'une cinétique lente, les personnes ont le temps d'être mises à l'abri à la suite de l'intervention des services de secours. Dans le cas contraire, la cinétique est considérée comme rapide.

Dans le cadre d'une étude de dangers pour des aérogénérateurs, il est supposé, de manière prudente, que tous les accidents considérés ont une <u>cinétique rapide</u>. Ce paramètre ne sera donc pas détaillé à nouveau dans chacun des phénomènes redoutés étudiés par la suite.

Ce paramètre ne sera donc pas détaillé à nouveau dans chacun des phénomènes redoutés étudiés par la suite.

9.1.2 Intensité

L'intensité des effets des phénomènes dangereux est définie par rapport à des valeurs de référence exprimées sous forme de seuils d'effets toxiques, d'effets de surpression, d'effets thermiques et d'effets liés à l'impact d'un projectile, pour les hommes et les structures (article 9 de l'arrêté du 29 septembre 2005).

On constate que les scénarios retenus au terme de l'analyse préliminaire des risques pour les parcs éoliens sont des scénarios de projection (de glace ou de toute ou partie de pale), de chute d'éléments (glace ou toute ou partie de pale) ou d'effondrement de machine.

Or, les seuils d'effets proposés dans l'arrêté du 29 septembre 2005 [13] caractérisent des phénomènes dangereux dont l'intensité s'exerce dans toutes les directions autour de l'origine du phénomène, pour des effets de surpression, toxiques ou thermiques). Ces seuils ne sont donc pas adaptés aux accidents générés par les aérogénérateurs.

Dans le cas de scénarios de projection, l'annexe II de cet arrêté précise : « Compte tenu des connaissances limitées en matière de détermination et de modélisation des effets de projection, l'évaluation des effets de projection d'un phénomène dangereux nécessite, le cas échéant, une analyse, au cas par cas, justifiée par l'exploitant. Pour la délimitation des zones d'effets sur l'homme ou sur les structures des installations classées, il n'existe pas à l'heure actuelle de valeur de référence. Lorsqu'elle s'avère nécessaire, cette délimitation s'appuie sur une analyse au cas par cas proposée par l'exploitant ».

C'est pourquoi, pour chacun des événements accidentels retenus (chute d'éléments, chute de glace, effondrement et projection), deux valeurs de référence ont été retenues :

- 5% d'exposition : seuils d'exposition très forte
- 1% d'exposition : seuil d'exposition forte

Le degré d'exposition est défini comme le rapport entre la surface atteinte par un élément chutant ou projeté et la surface de la zone exposée à la chute ou à la projection.

Intensité	Degré d'exposition
exposition très forte	Supérieur à 5 %
exposition forte	Compris entre 1 % et 5 %
exposition modérée	Inférieur à 1 %

Tableau 6. Grille de cotation en intensité issue du guide technique

Les zones d'effets sont définies pour chaque événement accidentel comme la surface exposée à cet événement.

9.1.3 Gravité

Par analogie aux niveaux de gravité retenus dans l'annexe III de l'arrêté du 29 septembre 2005, les seuils de gravité sont déterminés en fonction du nombre équivalent de personnes permanentes dans chacune des zones d'effet définies dans le paragraphe précédent.

Intensité Zone d'effet d'un Zone d'effet d'un événement accidentel événement accidentel			Zone d'effet d'un événement accidentel	
Gravité	engendrant une exposition très forte	engendrant une exposition forte	engendrant une exposition modérée	
« Désastreux »	Plus de 10 personnes exposées	Plus de 100 personnes exposées	Plus de 1000 personnes exposées	
« Catastrophique »	Moins de 10 personnes exposées	Entre 10 et 100 personnes exposées	Entre 100 et 1000 personnes exposées	
« Important »	Au plus 1 personne exposée	Entre 1 et 10 personnes exposées	Entre 10 et 100 personnes exposées	
« Sérieux »	Aucune personne exposée	Au plus 1 personne exposée	Moins de 10 personnes exposées	
« Modéré »	Pas de zone de létalité en dehors de l'établissement	Pas de zone de létalité en dehors de l'établissement	Présence humaine exposée inférieure à « une personne »	

Tableau 7. Grille de cotation en gravité de l'arrêté du 29 Septembre 2005

√ Méthodologie

La détermination du nombre de personnes permanentes (ou équivalent personnes permanentes) présentes dans chacune des zones d'effet est effectuée à l'aide de la méthode présentée en annexe 1.

Cette méthode se base sur la fiche n°1 de la circulaire du 10 mai 2010 relative aux règles méthodologiques applicables aux études de dangers. Cette fiche permet de compter aussi simplement que possible, selon des règles forfaitaires, le nombre de personnes exposées.

Ainsi, pour chaque phénomène dangereux identifié, nous comptabiliserons l'ensemble des personnes présentes dans la zone d'effet correspondante.

Dans chaque zone couverte par les effets d'un phénomène dangereux issu de l'analyse des risques, nous identifierons les ensembles homogènes (ERP, zones habitées, zones industrielles, commerces, voies de circulation, terrains non bâtis...) et nous en déterminerons la surface (pour les terrains non bâtis, les zones d'habitat) et/ou la longueur (pour les voies de circulation).

✓ Hypothèse de travail

Concernant les zones agricoles, elles sont constituées d'éléments disparates : champs, voies de circulation non structurantes (chemins, voies faiblement fréquentées).

Selon la circulaire :

- Un champ est classé terrain non aménagé et très peu fréquenté. Compter 1 personne par tranche de 100 ha
- Les voies de circulation non structurantes sont classées en terrains aménagés mais peu fréquentés. Compter 1 personne par tranche de 10 ha.
- Chemin de randonnées : compter 2 personnes pour 1km par tranche de 100 promeneurs/jour en moyenne.

Concernant les boisements, ils n'ont pas vocation de loisirs et ne sont pas aménagés en tant que tels. Comme les zones agricoles, ils seront classés en terrains non aménagés et très peu fréquentés.

9.1.4 Probabilité

L'annexe I de l'arrêté du 29 septembre 2005 définit les classes de probabilité qui doivent être utilisées dans les études de dangers pour caractériser les scénarios d'accident majeur :

Niveaux	Echelle qualitative	Echelle quantitative (probabilité annuelle)
А	Courant Se produit sur le site considéré et/ou peut se produire à plusieurs reprises pendant la durée de vie des installations, malgré d'éventuelles mesures correctives.	P > 10 ⁻²
В	Probable S'est produit et/ou peut se produire pendant la durée de vie des installations.	10 ⁻³ < P ≤ 10 ⁻²
С	Improbable Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité.	10 ⁻⁴ < P ≤ 10 ⁻³
D	Rare S'est déjà produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité.	10 ⁻⁵ < P ≤ 10 ⁻⁴
E	Extrêmement rare Possible mais non rencontré au niveau mondial. N'est pas impossible au vu des connaissances actuelles.	P ≤ 10 ⁻⁵

Tableau 8. Grille de cotation en probabilité de l'arrêté du 29 septembre 2005

Dans le cadre de l'étude de dangers des parcs éoliens, la probabilité de chaque événement accidentel identifié pour une éolienne est déterminée en fonction :

- De la bibliographie relative à l'évaluation des risques pour des éoliennes ;
- Du retour d'expérience français ;
- Des définitions qualitatives de l'arrêté du 29 Septembre 2005.

Il convient de noter que la probabilité qui sera évaluée pour chaque scénario d'accident correspond à la probabilité qu'un événement redouté se produise sur l'éolienne (probabilité de départ) et non à la probabilité que cet événement produise un accident suite à la présence d'un véhicule ou d'une personne au point d'impact (probabilité d'atteinte). En effet, l'arrêté du 29 septembre 2005 impose une évaluation des probabilités de départ uniquement.

Cependant, on pourra rappeler que la probabilité qu'un accident sur une personne ou un bien se produise est très largement inférieure à la probabilité de départ de l'événement redouté.

La probabilité d'accident est en effet le produit de plusieurs probabilités :

P_{FRC} = probabilité que l'événement redouté central (défaillance) se produise = probabilité de départ

P_{orientation} = probabilité que l'éolienne soit orientée de manière à projeter un élément lors d'une défaillance dans la direction d'un point donné (en fonction des conditions de vent notamment)

P_{rotation} = probabilité que l'éolienne soit en rotation au moment où l'événement redouté se produit (en fonction de la vitesse du vent notamment)

P_{atteinte} = probabilité d'atteinte d'un point donné autour de l'éolienne (sachant que l'éolienne est orientée de manière à projeter un élément en direction de ce point et qu'elle est en rotation)

P_{présence} = probabilité de présence d'un enjeu donné au point d'impact sachant que l'élément est projeté en ce point donné

Dans le cadre des études de dangers des éoliennes, une approche majorante assimilant la probabilité d'accident $(P_{accident})$ à la probabilité de l'événement redouté central (P_{ERC}) a été retenue.

9.1.5 Acceptabilité

Enfin, la dernière étape de l'étude détaillée des risques consiste en l'analyse de l'acceptabilité des accidents potentiels pour chacun des phénomènes dangereux étudiés.

L'analyse d'acceptabilité est basée sur la matrice de criticité ci-dessous, adaptée de la circulaire du 29 septembre 2005 et reprise dans la circulaire du 10 mai 2010.

Conséquence	Classe de probabilité				
	Е	D	С	В	Α
Désastreux					
Catastrophique					
Important					
Sérieux					
Modéré					

Tableau 1. Cotation des risques selon la matrice de criticité de la circulaire du 10 mai 2010

Légende de la matrice :

Niveau de risque	Code Couleur	Acceptabilité
Risque très faible		Acceptable
Risque faible		Acceptable
Risque important		Non acceptable

L'acceptabilité résulte du croisement entre probabilité d'occurrence et gravité de l'accident.

9.3 CARACTERISATION DES SCENARIOS RETENUS

Pour les éoliennes du parc éolien Les Froids Vents, le gabarit maximaliste retenu pour cette étude est le suivant :

Machine	E1-E2-E3-E4
Puissance nominale	4 500 kW
Diamètre du rotor	150 m
Longueur d'une pale	73 m
Largeur maximale d'une pale (Corde)	4,2 m
Hauteur de moyeu	105 m
Diamètre maximum à la base	4 m
Hauteur en bout de pale	180 m

9.3.1 Effondrement de l'éolienne

9.3.1.1 Zone d'effet

La zone d'effet de l'effondrement d'une éolienne correspond à une surface circulaire de rayon égal à la hauteur totale de l'éolienne en bout de pale, soit 180m dans le cas des éoliennes du parc Les Froids Vents. Cette méthodologie se rapproche de celles utilisées dans la bibliographie (références [5] et [6]). Les risques d'atteinte d'une personne ou d'un bien en dehors de cette zone d'effet sont négligeables et ils n'ont jamais été relevés dans l'accidentologie ou la littérature spécialisée.

9.3.1.2 Intensité

Pour le phénomène d'effondrement de l'éolienne, le degré d'exposition correspond au ratio entre la surface totale balayée par le rotor et la surface du mât non balayée par le rotor, d'une part, et la superficie de la zone d'effet du phénomène, d'autre part.

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène d'effondrement de l'éolienne dans le cas des éoliennes du parc Les Froids Vents, considérant que :

- R est la longueur de pale (R= 73 m);
- H la hauteur du mât (H = 105 m);
- L la largeur maximale du mât (L= 4 m);
- LB la largeur maximale de pale (LB= 4,2 m).

(Dans u	Effondrement de l'éolienne (Dans un rayon inférieur ou égal à la hauteur totale de l'éolienne en bout de pale)					
Numéro Eolienne Zone d'impact en m² (H) x L + 3xRxLB/2 Zone d'effet du phénomène étudié en m² en m² π x (H+R)² Degré d'exposition du phénomène étudié en %						
E1-E2-E3-E4	880	99 538	0,88	Exposition Modérée		

L'intensité du phénomène d'effondrement est nulle au-delà de la zone d'effondrement.

9.3.1.3 Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe 8.1.3.), il est possible de définir les différentes classes de gravité pour le phénomène d'effondrement, dans le rayon inférieur ou égal à la hauteur totale de l'éolienne :

- Plus de 1000 personnes exposées : « Désastreux » ;
- Entre 100 et 1000 personnes exposées : « Catastrophique » ;
- Entre 10 et 100 personnes exposées : « Important » ;
- Moins de 10 personnes exposées : « Sérieux » ;
- Présence humaine exposée inférieure à « une personne » : « Modéré ».

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène d'effondrement et la gravité associée :

	Effondrement de l'éolienne (Dans un rayon inférieur ou égal à la hauteur totale de l'éolienne en bout de pale)					
	Superfici	es concernées par la zon	ne d'effet	Nombre de personnes — permanentes (ou équivalent personnes permanentes)		
	Terrains non aménagés (m²)	Terrains aménagés peu fréquentés (m²)	Terrain de randonnée (m)		Gravité	
E1	95649,8	3888,46	0	0,13	Modérée	
E2	96892,5	2645,68	0	0,12	Modérée	
E3	96891,4	2646,84	0	0,12	Modérée	
E4	94050,4	4829,11	330	0,80	Modérée	

Par exemple, pour l'éolienne E1, on a : Nombre personnes permanentes = Nombre personnes champs + Nombre personnes voies + nombre personne chemin randonnée = 0,095 + 0,038 = 0,13

La gravité est donc au niveau « Sérieux » pour chaque éolienne du parc.

La méthode de comptage des enjeux humains dans chaque secteur est présentée en annexe 1. Elle se base sur la fiche n°1 de la circulaire du 10 mai 2010 relative aux règles méthodologiques applicables aux études de dangers.

Dans le périmètre délimité par la hauteur de chute de l'éolienne, le terrain est constitué de terres agricoles et de routes peu fréquentés.

Pour une éolienne d'une hauteur en bout de pale de 180 m, le nombre de personnes exposées sera donc inférieur à 1.

La gravité sera donc considérée comme « Modérée ».

9.3.1.4 Probabilité

Pour l'effondrement d'une éolienne, les valeurs retenues dans la littérature sont détaillées dans le tableau suivant :

Source	Fréquence	Justification
Guide for risk based zoning of wind turbines [5]	4,5 x 10⁻⁴	Retour d'expérience
Specification of minimum distances [6]	1,8 x 10 ⁻⁴ (effondrement de la nacelle et de la tour)	Retour d'expérience

Ces valeurs correspondent à une classe de probabilité « C » selon l'arrêté du 29 septembre 2005.

Le retour d'expérience français montre également une classe de probabilité « C ». En effet, il a été recensé seulement 7 événements pour 15 667 années d'expérience³, soit une probabilité de 4,47 x 10⁻⁴ par éolienne et par an.

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 septembre 2005 d'une probabilité « C », à savoir : « Evènement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « C » est donc retenue par défaut pour ce type d'événement.

Néanmoins, les dispositions constructives des éoliennes ayant fortement évolué, le niveau de fiabilité est aujourd'hui bien meilleur. Des mesures de maîtrise des risques supplémentaires ont été mises en place sur les machines récentes et permettent de réduire significativement la probabilité d'effondrement. Ces mesures de sécurité sont notamment :

- Respect intégral des dispositions de la norme IEC 61 400-1;
- Contrôles réguliers des fondations et des différentes pièces d'assemblages ;
- Système de détection des survitesses et un système redondant de freinage ;
- Système de détection des vents forts et un système redondant de freinage et de mise en sécurité des installations un système adapté est installé en cas de risque cyclonique.

On note d'ailleurs, dans le retour d'expérience français, qu'aucun effondrement n'a eu lieu sur les éoliennes mises en service après 2010.

De manière générale, le respect des prescriptions de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation permet de s'assurer que les éoliennes font l'objet de mesures réduisant significativement la probabilité d'effondrement.

Il est considéré que la classe de probabilité de l'accident est « D », à savoir : « S'est produit, mais a fait l'objet de mesures correctives réduisant significativement la probabilité ».

9.3.1.5 Acceptabilité

Dans le cas d'implantation d'éoliennes équipées des technologies récentes, compte tenu de la classe de probabilité d'un effondrement, on pourra conclure à l'acceptabilité de ce phénomène si moins de 10 personnes sont exposées.

³ Une année d'expérience correspond à une éolienne observée pendant une année. Ainsi, si on a observé une éolienne pendant 5 ans et une autre pendant 7 ans, on aura au total 12 années d'expérience.

Le tableau suivant rappelle, pour chaque aérogénérateur du parc éolien d'Ayencourt, la gravité associée et le niveau de risque (acceptable/inacceptable):

Le parc éolien Les Froids Vents				
Effondrement de l'éolienne (Dans un rayon inférieur ou égal à la hauteur totale de l'éolienne en bout de pale)				
Eolienne Gravité Niveau de risque				
E1	Modéré	Acceptable		
E2	Modéré	Acceptable		
E3	Modéré	Acceptable		
E4	Modéré	Acceptable		

Ainsi, pour les éoliennes du le parc éolien Les Froids Vents, le phénomène d'effondrement des éoliennes constitue un risque acceptable pour les personnes.

9.3.2 Chute d'éléments de l'éolienne

9.3.2.1 Zone d'effet

La chute d'éléments comprend la chute de tous les équipements situés en hauteur : trappes, boulons, morceaux de pales ou pales entières. Le cas majorant est ici le cas de la chute de pale. Il est retenu dans l'étude détaillée des risques pour représenter toutes les chutes d'éléments.

Le risque de chute d'élément est cantonné à la zone de survol des pales, c'est-à-dire une zone d'effet correspondant à un disque de rayon égal à un demi-diamètre de rotor.

9.3.2.3 Intensité

Pour le phénomène de chute d'éléments, le degré d'exposition correspond au ratio entre la surface d'un élément (cas majorant d'une pale entière se détachant de l'éolienne) et la superficie de la zone d'effet du phénomène (zone de survol).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de chute d'éléments de l'éolienne dans le cas des éoliennes du parc éolien.

- d est le degré d'exposition ;
- ZI est la zone d'impact;
- ZE est la zone d'effet ;
- R est la longueur de pale (R= 73 m);
- LB est la corde maximale de la pale (LB= 4,2 m);
- D/2 est la longueur d'un demi-diamètre (D/2= 75 m).

Chute d'éléments de l'éolienne (Dans un rayon inférieur ou égal à D/2 = 75m)					
Numéro Eolienne	Zone d'impact en m²	Zone d'effet du phénomène étudié en m²	Degré d'exposition du phénomène étudié en %	Intensité	
E4 > E4	Zi = R*LB/2	$Z_E = \pi \times (D/2)^2$	D = Zi/ Z _E	Exposition	
E1 à E4	153,3	16741,5	0,92	Modérée	

L'intensité en dehors de la zone de survol est nulle.

9.3.2.4 Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe 8.1.3.), il est possible de définir les différentes classes de gravité pour le phénomène de chute d'éléments, dans la zone de survol de l'éolienne :

- Plus de 1000 personnes exposées : « Désastreux » ;
- Entre 100 et 1000 personnes exposées : « Catastrophique » ;
- Entre 10 et 100 personnes exposées : « Important » ;
- Moins de 10 personnes exposées : « Sérieux » ;
- Présence humaine exposée inférieure à « une personne » : « Modéré ».

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de chute d'éléments et la gravité associée :

du prienomene de criate à éternents et la gravite associée.						
	Chute d'éléments de l'éolienne (Dans un rayon inférieur ou égal à R = D/2 = 75m)					
	Superficies concernées par la zone d'effet (en m²) Nombre de personnes					
Eolienne	lienne Terrains non aménagés peu fréquentés		permanentes (ou équivalent personnes permanentes)	Gravité		
E1	14624,2	2117,35	0,0358	Modérée		
E2	14626,2	2114,55	0,0358	Modérée		
E3	14624,2	2117,35	0,0358	Modérée		
E4	14491,4	2250,18	0,0370	Modérée		

Dans le cas des éoliennes du parc Les Froids Vents, la zone de survol des éoliennes correspond très majoritairement à des terrains non aménagés (soit 1 personne pour 100 ha d'après la fiche n° 1 de la circulaire du 10 mai 2010).

Le nombre de personnes permanentes (ou équivalent personnes permanentes) exposées sous les pales est donc largement inférieur à 1.

Le niveau de gravité sera donc « Modérée ».

9.3.2.5 Probabilité

Peu d'éléments sont disponibles dans la littérature pour évaluer la fréquence des événements de chute de pales ou d'éléments d'éoliennes.

Le retour d'expérience connu en France montre que ces évènements ont une classe de probabilité « C » (2 chutes et 5 incendies pour 15 667 années d'expérience, soit 4.47 x 10⁻⁴ événement par éolienne et par an).

Ces évènements correspondent également à la définition qualitative de l'arrêté du 29 Septembre 2005 d'une probabilité « C » : « Evènement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « C » est donc retenue par défaut pour ce type d'évènement.

9.3.2.6 Acceptabilité

Avec une classe de probabilité « C », le risque de chute d'éléments pour chaque aérogénérateur est évalué comme acceptable dans le cas d'un nombre de personnes permanentes (ou équivalent) inférieur à 10 dans la zone d'effet.

Le tableau suivant rappelle, pour chaque aérogénérateur du le parc éolien Les Froids Vents, la gravité associée et le niveau de risque (acceptable/inacceptable) :

Le parc éolien Les Froids Vents Chute d'éléments de l'éolienne				
(Dans un rayon inférieur ou égal à D/2 = 75m)				
Eolienne Gravité Niveau de risque				
E1	Modérée	Acceptable		
E2	E2 Modérée			
E3 Modérée Acceptable				
E4	Modérée	Acceptable		

Ainsi, pour les éoliennes du parc Les Froids Vents, le phénomène de chute d'éléments des éoliennes constitue un risque acceptable pour les personnes.

9.3.3 Chute de glace

9.3.3.1 Considérations générales

Les périodes de gel et l'humidité de l'air peuvent entraîner, dans des conditions de température et d'humidité de l'air bien particulières, une formation de givre ou de glace sur l'éolienne, ce qui induit des risques potentiels de chute de glace.

Selon l'étude WECO [15], une grande partie du territoire français (hors zones de montagne) est concerné par moins d'un jour de formation de glace par an. Certains secteurs du territoire, comme les zones côtières, affichent des moyennes qui varient entre 2 et 7 jours de formation de glace par an.

Lors des périodes de dégel qui suivent les périodes de grand froid, des chutes de glace peuvent se produire depuis la structure de l'éolienne (nacelle, pales). Normalement, le givre qui se forme en fine pellicule sur les pales de l'éolienne fond avec le soleil.

En cas de vents forts, des morceaux de glace peuvent se détacher. Ils se désagrègent généralement avant d'arriver au sol. Ce type de chute de glace est similaire à ce qu'on observe sur d'autres bâtiments et infrastructures.

9.3.3.2 Zone d'effet

Le risque de chute de glace est cantonné à la zone de survol des pales, soit un disque de rayon égal à un demidiamètre de rotor autour du mât de l'éolienne. Pour les éoliennes du parc éolien, la zone d'effet à donc un rayon de 75 mètres (D/2).

Cependant, il convient de noter que, lorsque l'éolienne est à l'arrêt, les pales n'occupent qu'une faible partie de cette zone.

9.3.3.3 Intensité

Pour le phénomène de chute de glace, le degré d'exposition correspond au ratio entre la surface d'un morceau de glace et la superficie de la zone d'effet du phénomène (zone de survol).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de chute de glace dans le cas des éoliennes du parc éolien Les Froids Vents. Z_I est la zone d'impact, Z_E est la zone d'effet, R correspond à un demi-rotor, SG est la surface du morceau de glace majorant (SG= 1 m^2).

Chute de glace (Dans un rayon inférieur ou égal à D/2 = Zone de survol)					
Numéro Eolienne	Intensité				
E1 à E4	1	17671	0,006	Exposition Modérée	

L'intensité est nulle hors de la zone de survol.

9.3.3.4 Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe 8.1.3.), il est possible de définir les différentes classes de gravité pour le phénomène de chute de glace, dans la zone de survol de l'éolienne :

- Plus de 1000 personnes exposées : « Désastreux » ;
- Entre 100 et 1000 personnes exposées : « Catastrophique » ;
- Entre 10 et 100 personnes exposées : « Important » ;
- Moins de 10 personnes exposées : « Sérieux » ;
- Présence humaine exposée inférieure à « une personne » : « Modéré ».

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de chute de glace et la gravité associée :

Chute de glace (Dans un rayon inférieur ou égal à R = D/2 = 75m)					
Superficies concernées par la zo d'effet (en m²)			Nombre de personnes		
Eolienne	Terrains non aménagés	Terrains aménagés peu fréquentés	permanentes (ou équivalent personnes permanentes)	Gravité	
E1	14624,2	2117,35	0,0358	Modérée	
E2	14626,2	2114,55	0,0358	Modérée	
E3	14624,2	2117,35	0,0358	Modérée	
E4	14491,4	2250,18	0,0370	Modérée	

Par exemple, pour l'éolienne E3, on a :

Nombre personnes permanentes = Nombre personnes champs + Nombre personnes voies

Nombre personnes permanentes = 0.0144 + 0.0225 = 0.0370

La zone de survol de l'éolienne est un terrain non aménagé et très peu fréquenté (1 personne pour 100 ha d'après la fiche n°1 de la circulaire du 10 mai 2010).

Pour une éolienne d'une longueur de pale de 73 m, le nombre équivalent de personnes permanentes sera donc inférieur à 1.

La gravité sera donc « Modérée ».

9.3.3.5 Probabilité

<u>De façon conservatrice</u>, il est considéré que la probabilité est de classe « A », c'est-à-dire une probabilité supérieure à 10⁻².

9.3.3.6 Acceptabilité

Avec une classe de probabilité de A, le risque de chute de glace pour chaque aérogénérateur est évalué comme acceptable dans le cas d'une gravité « Modérée » qui correspond pour cet événement à un nombre de personnes permanentes (ou équivalent) inférieur à 1.

Dans le cas contraire, l'exploitant devra démontrer que des mesures de sécurité supplémentaires sont mises en place afin d'améliorer l'acceptabilité de ce risque.

Le tableau suivant rappelle, pour chaque aérogénérateur du le parc éolien Les Froids Vents, la gravité associée et le niveau de risque (acceptable/inacceptable) :

	Le parc éolien Les Froids Vents				
	Chute de glace (Dans un rayon inférieur ou égal à D/2 = 75m)				
Eolienne	Eolienne Gravité Niveau de risque				
E1	Modérée	Acceptable			
E2	Modérée	Acceptable			
E3	Modérée	Acceptable			
E4	Modérée	Acceptable			

Ainsi, pour le parc éolien Les Froids Vents, le phénomène de chute de glace des éoliennes constitue un risque acceptable pour les personnes.

Il convient également de rappeler que, conformément à l'article 14 de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation, un panneau informant le public des risques (et notamment des risques de chute de glace) sera installé sur le chemin d'accès de chaque aérogénérateur, c'est-à-dire en amont de la zone d'effet de ce phénomène.

Cette mesure permettra de réduire les risques pour les personnes potentiellement présentes sur le site lors des épisodes de grand froid.

9.3.4 Projection de pales ou de fragments de pales

9.3.4.1 Zone d'effet

Dans l'accidentologie française rappelée en annexe, la distance maximale relevée et vérifiée par le groupe de travail précédemment mentionné pour une projection de fragment de pale est de 380 mètres par rapport au mât de l'éolienne. On constate que les autres données disponibles dans cette accidentologie montrent des distances d'effet inférieures.

L'accidentologie éolienne mondiale manque de fiabilité car la source la plus importante (en termes statistiques) est une base de données tenue par une association écossaise majoritairement opposée à l'énergie éolienne [3]. Pour autant, des études de risques déjà réalisées dans le monde ont utilisé une distance de 500 mètres, en particulier les études [5] et [6].

Sur la base de ces éléments et de façon conservatrice, une distance d'effet de 500 mètres est considérée comme distance raisonnable pour la prise en compte des projections de pales ou de fragments de pales dans le cadre des études de dangers des parcs éoliens.

9.3.4.2 Intensité

Pour le phénomène de projection de pales ou de fragments de pales, le degré d'exposition correspond au ratio entre la surface d'un élément (cas majorant d'une pale entière) et la superficie de la zone d'effet du phénomène (500 m).

- d est le degré d'exposition;
- ZI est la zone d'impact ;
- ZE est la zone d'effet;
- R est la longueur de pale (R= 73 m);
- LB est la corde maximale de la pale (LB= 4,2 m).

Projection de pales ou de fragments de pales (Zone de 500 m autour de chaque éolienne)					
Numéro Eolienne Zone d'impact en m² Zone d'effet du phénomène étudié en m² étudié en %					
	Zi = R*LB/2	Z _E =π x 500 ²	d= Zi/ Z _E	Exposition	
E1 à E4	153,3	785 398	0,2	Modérée	

9.3.4.3 Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe 8.1.3.), il est possible de définir les différentes classes de gravité pour le phénomène de projection, dans la zone de 500 m autour de l'éolienne :

- Plus de 1000 personnes exposées : « Désastreux » ;
- Entre 100 et 1000 personnes exposées : « Catastrophique » ;
- Entre 10 et 100 personnes exposées : « Important » ;
- Moins de 10 personnes exposées : « Sérieux » ;
- Présence humaine exposée inférieure à « une personne » : « Modéré ».

		(Zone de 500 n	n autour de chaque	éolienne)	
	Superficie	s concernées par la zor	ne d'effet	Nombre de personnes	
olienne	Terrains non	Terrains aménagés	Terrain de	permanentes (ou équivalent personnes	

	Superficies concernées par la zone d'effet		Nombre de personnes		
Eolienne	Terrains non aménagés (m²)	Terrains aménagés peu fréquentés (m²)	aménagés Terrain de équiv équentés randonnées (m) Pé	permanentes (ou équivalent personnes permanentes) Gravité	Gravité
E1	773485	11912,96	0	0,8926	Modéré
E2	769783	15615,24	0	0,9259	Modéré
E3	764208	19834,58	677,7	2,3180	Sérieux
E4	762327	21064,7	1003	2,9790	Sérieux

Projection de pales ou de fragments de pales

Par exemple, pour l'éolienne E4, on a : Nombre personnes permanentes = Nombre personnes terrains non aménagés + Nombre personnes terrains peu aménagés + nombre personnes randonnées = 0,7623 + 0,2106 + 2.006 = 2,3180

Il est à noter que pour le parc éolien Les Froids Vents, la zone d'effet est majoritairement constituée de terrains agricoles très peu fréquentés. La zone d'effet comprend également un chemin de Grande Randonnée (GR 124).

Le niveau de gravité sera donc « Modéré » pour les éoliennes E1-E2 et « Sérieux » pour les éoliennes E3-E4.

9.3.4.4 Probabilité

Les valeurs retenues dans la littérature pour une rupture de tout ou partie de pale sont détaillées dans le tableau suivant:

Source	Fréquence	Justification
Site specific hazard assesment for a wind farm project [4]	1 x 10 ⁻⁶	Respect de l'Eurocode EN 1990 – Basis of structural design
Guide for risk based zoning of wind turbines [5]	1, 1 x 10 ⁻³	Retour d'expérience au Danemark (1984-1992) et en Allemagne (1989-2001)
Specification of minimum distances [6]	6,1 x 10⁻⁴	Recherche Internet des accidents entre 1996 et 2003

Ces valeurs correspondent à des classes de probabilité de « B », « C » ou « E ».

Le retour d'expérience français montre également une classe de probabilité « C » (12 événements pour 15 667 années d'expérience, soit 7,66 x 10⁻⁴ événement par éolienne et par an).

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 Septembre 2005 d'une probabilité « C » : « Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « C » est donc retenue par défaut pour ce type d'événement.

Néanmoins, les dispositions constructives des éoliennes ayant fortement évolué, le niveau de fiabilité est aujourd'hui bien meilleur. Des mesures de maîtrise des risques supplémentaires ont été mises en place notamment:

- Les dispositions de la norme IEC 61 400-1;
- Les dispositions des normes IEC 61 400-24 et EN 62 305-3 relatives à la foudre ;

Dossier de demande d'autorisation environnementale

- Système de détection des survitesses et un système redondant de freinage ;
- Système de détection des vents forts et un système redondant de freinage et de mise en sécurité des installations un système adapté est installé en cas de risque cyclonique ;
- Utilisation de matériaux résistants pour la fabrication des pales (fibre de verre ou de carbone, résines, etc.).

De manière générale, le respect des prescriptions de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation permet de s'assurer que les éoliennes font l'objet de mesures réduisant significativement la probabilité de projection.

Il est considéré que la classe de probabilité de l'accident est « D » : « S'est produit, mais a fait l'objet de mesures correctrices réduisant significativement la probabilité ».

9.3.4.5 Acceptabilité

Avec une classe de probabilité de « D », le risque de projection de tout ou partie de pale pour chaque type d'aérogénérateur est évalué comme acceptable dans le cas d'un nombre équivalent de personnes permanentes inférieur à 1000 dans la zone d'effet.

Le tableau suivant rappelle, pour chaque aérogénérateur du le parc éolien Les Froids Vents, la gravité associée et le niveau de risque (acceptable/inacceptable):

	Le parc éolien Les Froids Vents								
	Projection de pales ou de fragments de pales (Zone de 500 m autour de chaque éolienne)								
Eolienne	Gravité	Niveau de risque							
E1	Modéré	Acceptable							
E2	Modéré	Acceptable							
E3	Sérieux	Acceptable							
E4	Sérieux	Acceptable							

Ainsi, pour le parc éolien Les Froids Vents, le phénomène de projection de tout ou partie de pale des éoliennes constitue un risque acceptable pour les personnes.

9.3.5 Projection de glace

9.3.5.1 Zone d'effet

L'accidentologie rapporte quelques cas de projection de glace. Ce phénomène est connu et possible, mais reste difficilement observable et n'a jamais occasionné de dommage sur les personnes ou les biens.

En ce qui concerne la distance maximale atteinte par ce type de projectiles, il n'existe pas d'information dans l'accidentologie. La référence [15] propose une distance d'effet fonction de la hauteur et du diamètre de l'éolienne, dans les cas où le nombre de jours de glace est important et où l'éolienne n'est pas équipée de système d'arrêt des éoliennes en cas de givre ou de glace :

Distance d'effet = 1,5 x (hauteur de moyeu + diamètre de rotor) Soit 382,5 m

Cette distance de projection est jugée conservative dans des études postérieures. A défaut de données fiables, il est proposé de considérer cette formule pour le calcul de la distance d'effet pour les projections de glace.

9.3.5.2 Intensité

Pour le phénomène de projection de glace, le degré d'exposition correspond au ratio entre la surface d'un morceau de glace (cas majorant de 1 m²) et la superficie de la zone d'effet du phénomène.

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de projection de glace pour les éoliennes.

- d est le degré d'exposition;
- - ZI est la zone d'impact ;
- ZE est la zone d'effet ;
- - D est la longueur du diamètre du rotor (D= 150 m);
- H est la hauteur au moyeu (H= 105 m)
- - SG est la surface majorante d'un morceau de glace (1 m²).

	Projection de morceaux de glaces (Dans un rayon de R _{PG} = 1,5 * (H+2R) autour de l'éolienne, soit 382,5 m)										
Numéro Eolienne	Zone d'impact en m² Zi = SG	Zone d'effet du phénomène étudié en m² Z _E =π x (1,5 x (H+2R)) ²	Degré d'exposition du phénomène étudié en % d= Zi/ Z _E	Intensité							
E1 à E4	1	445327,82	0.0002	Exposition Modérée							

9.3.5.3 Gravité

En fonction de cette intensité et des définitions issues du paragraphe 8.1.3., il est possible de définir les différentes classes de gravité pour le phénomène de projection de glace, dans la zone d'effet de ce phénomène :

- Plus de 1000 personnes exposées : « Désastreux » ;
- Entre 100 et 1000 personnes exposées : « Catastrophique » ;
- Entre 10 et 100 personnes exposées : « Important » ;
- Moins de 10 personnes exposées : « Sérieux » ;
- Présence humaine exposée inférieure à « une personne » : « Modéré ».

Il a été observé dans la littérature disponible qu'en cas de projection, les morceaux de glace se cassent en petits fragments dès qu'ils se détachent de la pale. La possibilité de l'impact de glace sur des personnes abritées par un bâtiment ou un véhicule est donc négligeable et ces personnes ne doivent pas être comptabilisées pour le calcul de la gravité.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de projection de glace et la gravité associée :

	Projection de morceaux de glaces (Dans un rayon de R _{PG} = 1,5 * (H+2R) autour de l'éolienne, soit 382,5)										
Falianna	Superfic	ies concernées par la	zone d'effet	Nombre de personnes permanentes (ou	Gravité						
Eolienne	Terrains non aménagés (m²)	Terrains aménagés peu fréquentés (m²)	Terrain de randonnée (m)	équivalent personnes permanentes)	Gravite						
E1	436352	8975,37	0	0,53	Modérée						
E2	436787	8541,21	0	0,52	Modérée						
E3	438380	6947,48	0	0,51	Modérée						
E4	430957	12865,75	752,3	2,06	Sérieux						

Par exemple, pour l'éolienne E1, on a : Nombre personnes permanentes = Nombre personnes permanentes = Nombre personnes terrains non aménagés + Nombre personnes terrains peu aménagés + nombre personnes randonnées = 0,4309 + 0,1286 + 1,5043 = 2,06

Il est à noter que pour le parc éolien Les Froids Vents, la zone d'effet est majoritairement constituée de terrains agricoles très peu fréquentés.

Aucun bâtiment principal ne se situe dans les 382,5m. La zone d'effet comprend également un chemin de Grande Randonnée (GR 124).

Le niveau de gravité sera donc « Sérieux » pour l'éolienne E4 et « Modéré » pour le reste des éoliennes.

9.3.5.4 Probabilité

Au regard de la difficulté d'établir un retour d'expérience précis sur cet événement et considérant des éléments suivants :

- Les mesures de prévention de projection de glace imposées par l'arrêté du 26 août 2011 ;
- Le recensement d'aucun accident lié à une projection de glace.

Une probabilité forfaitaire « B - événement probable » est proposé pour cet événement.

9.3.5.6 Acceptabilité

Le risque de projection pour chaque aérogénérateur est évalué comme acceptable dans le cas d'un niveau de gravité « Sérieux ». Cela correspond pour cet événement à un nombre équivalent de personnes permanentes inférieures à 10 dans la zone d'effet.

Le tableau suivant rappelle, pour chaque aérogénérateur du parc éolien Les Froids Vents, la gravité associée et le niveau de risque (acceptable/inacceptable):

	Le parc éolien Les Froids Vents								
Projection de morceaux de glace									
Eolienne	Gravité	Présence de système d'arrêt en cas de détection ou déduction de glace et procédure de redémarrage	Niveau de risque						
E1	Modérée	Oui	Acceptable						
E2	Modérée	Oui	Acceptable						
E3	Modérée	Oui	Acceptable						
E4	Sérieux	Oui	Acceptable						

Ainsi, pour le parc éolien Les Froids Vents, le phénomène de projection de glace constitue un risque acceptable pour les personnes.

Dossier de demande d'autorisation environnementale

9.4 SYNTHESE DE L'ETUDE DETAILLEE

9.4.1 Tableaux de synthèse des scénarios étudiés

Les tableaux suivants récapitulent, pour chaque événement redouté central retenu, les paramètres de risques : la cinétique, l'intensité, la gravité et la probabilité. Le tableau regroupe les éoliennes qui ont le même profil de risque.

	Synthèse de l'étude détaillée des risques											
Scénario	Zone d'effet	Cinétique	Intensité	Probabilité	Gravité							
Effondrement de l'éolienne S1	Disque dont le rayon correspond à une hauteur totale de la machine en bout de pale (180m)	Rapide	Exposition Modérée	D (pour des éoliennes récentes)	Modérée pour chacune des éoliennes du parc							
Chute d'éléments de l'éolienne S2	Zone de survol (75 m)	Rapide	Exposition Modérée	С	Modérée pour chacune des éoliennes du parc							
Chute de glace S3	Zone de survol (75 m)	Rapide	Exposition Modérée	A sauf su les températures hivernales sont supérieures à 0°C	Modérée pour chacune des éoliennes du parc							
Projection de pales S4	500 m autour de l'éolienne	Rapide	Exposition Modérée	D (Pour des éoliennes récentes)	Modérée pour les éoliennes E1-E2 Sérieuse pour les éoliennes E3-E4							
Projection de glace S5	1,5 x (H +2R) autour de l'éolienne, soit 382,5m	Rapide	Exposition Modérée	B sauf si les températures hivernales sont supérieures à 0°C	Modérée pour les éoliennes E1-E2-E3 Sérieuse pour l'éolienne E4							

Dossier de demande d'autorisation environnementale

9.4.2 Synthèse de l'acceptabilité des risques

Enfin, la dernière étape de l'étude détaillée des risques consiste à rappeler l'acceptabilité des accidents potentiels pour chacun des phénomènes dangereux étudiés.

Pour conclure à l'acceptabilité, la matrice de criticité ci-dessous, adaptée de la circulaire du 29 septembre 2005 reprise dans la circulaire du 10 mai 2010 mentionnée ci-dessus sera utilisée.

Conséquence	Classe de probabilité						
	Е	D	С	В	Α		
Désastreux							
Catastrophique							
Important							
Sérieux		S4 (E3-E4)		S5 (E4)			
Modéré		S1 S4 (E1-E2)	S2	S5 (E1-E2-E3)	\$3		

Légende de la matrice :

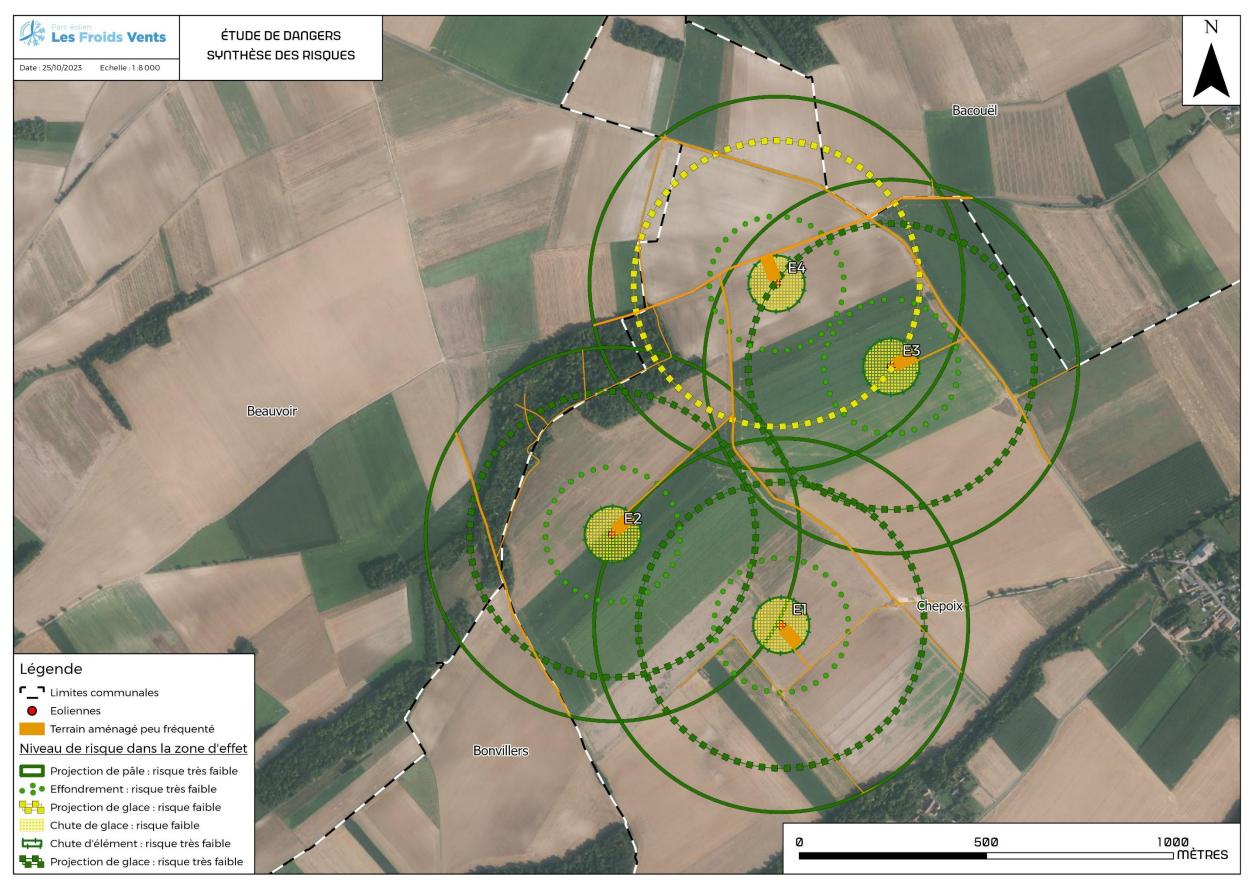
Niveau de risque	Code Couleur	Acceptabilité
Risque très faible		Acceptable
Risque faible		Acceptable
Risque important		Non acceptable

Rappel des Scénarii:

- S1 : Effondrement de l'éolienne ;
- S2 : Chute d'éléments de l'éolienne ;
- S3 : Chute de glace ;
- S4: Projection de pales;
- S5 : Projection de glace.

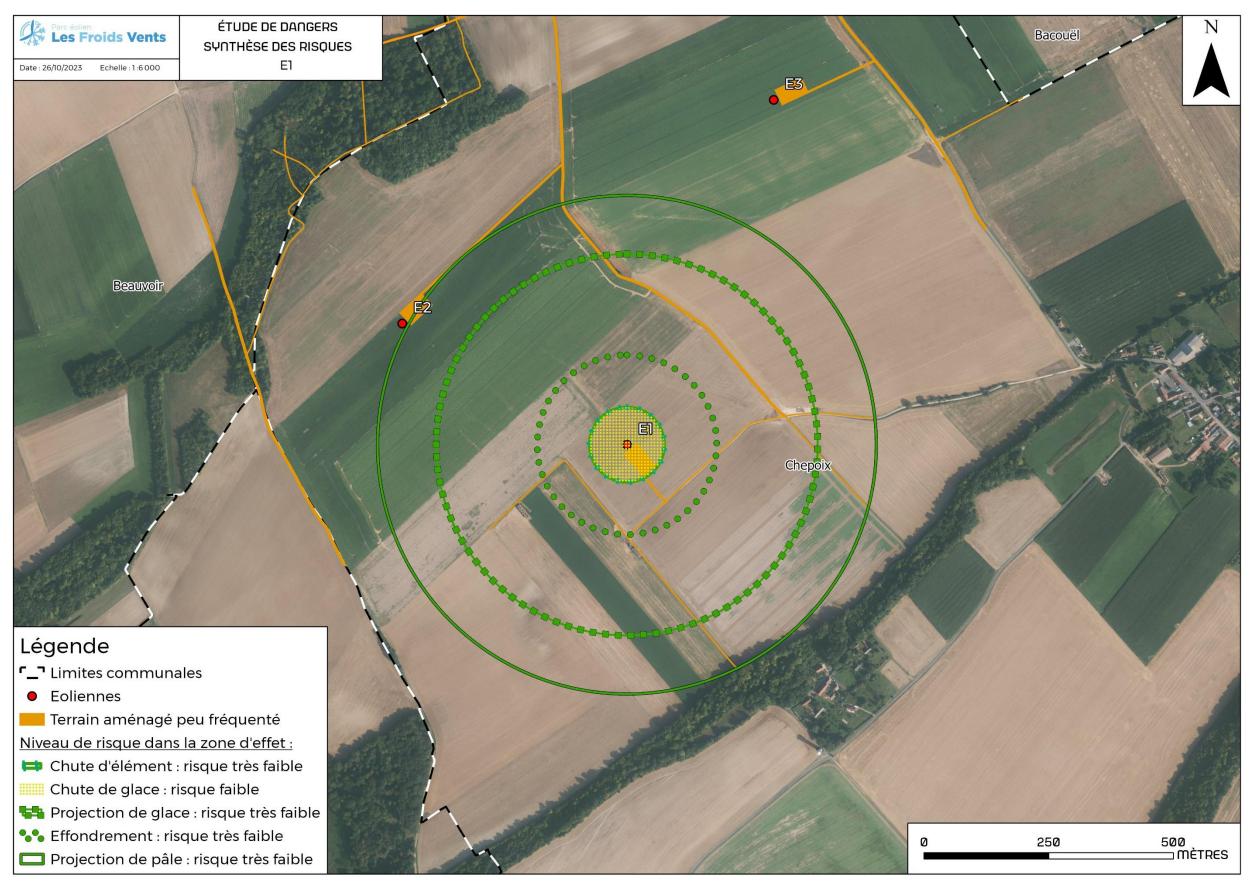
Il apparaît au regard de la matrice ainsi complétée que :

- Aucun accident n'apparaît dans les cases rouges (« non acceptables ») de la matrice ;
- Certains accidents figurent en case jaune (« acceptables »). Pour ces accidents, il convient de souligner que les fonctions de sécurité détaillées dans le chapitre 8.6 seront mises en place.

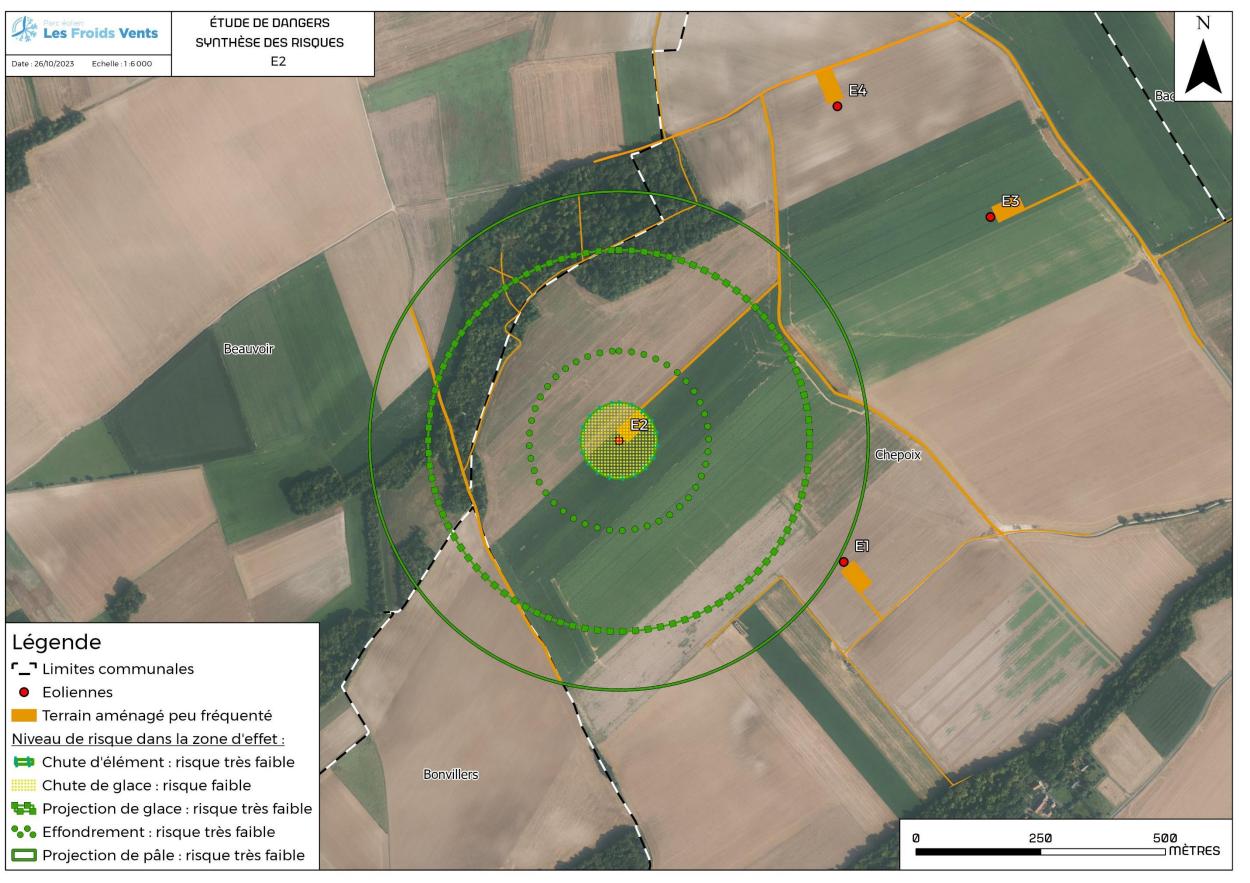

9.4.3 Cartographie des risques (pages suivantes)

À l'issue de la démarche d'analyse des risques, une carte de synthèse des risques pour l'ensemble du parc Les Froids Vents, puis pour chaque risque est proposé dans ce paragraphe :

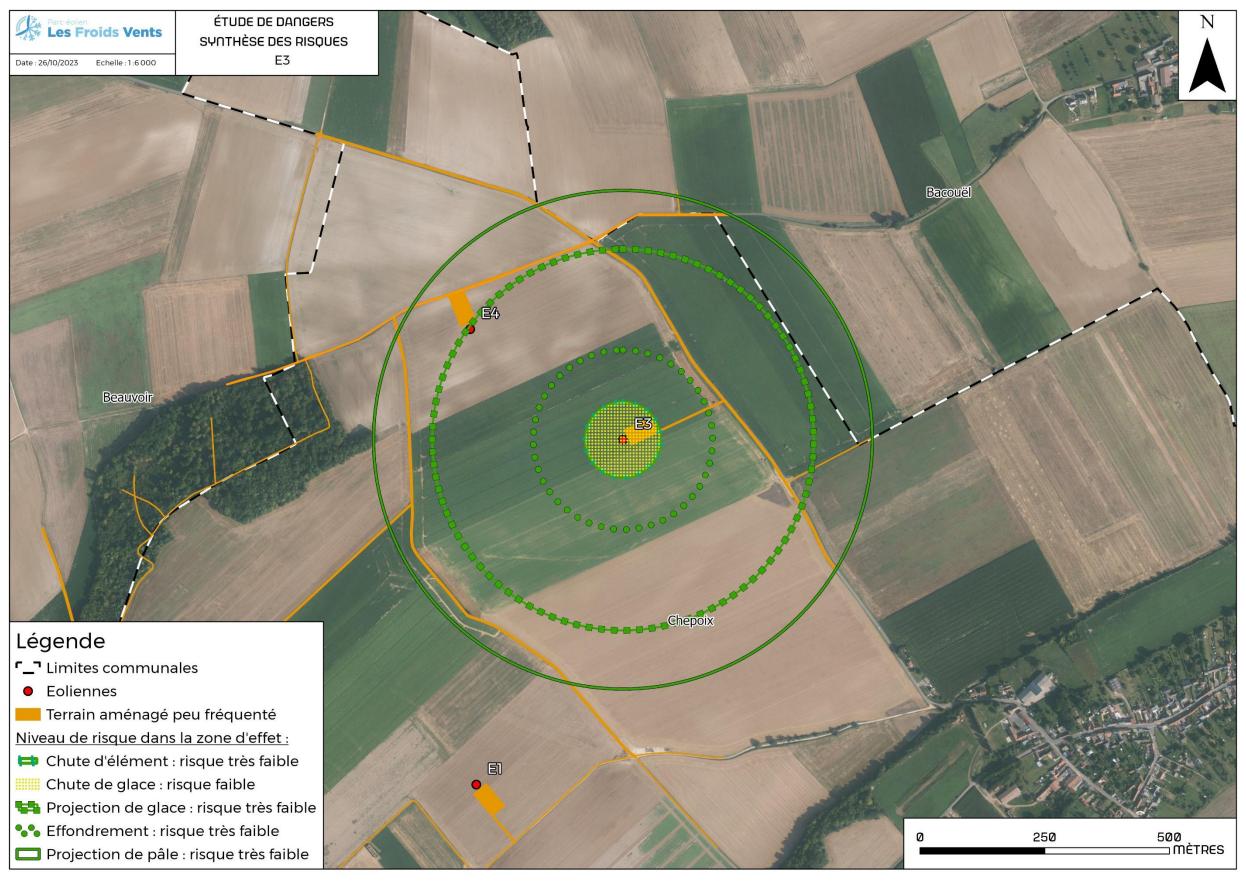
- Carte de synthèse de l'ensemble des risques évoqués : Carte 22
- Carte de synthèse « Eolienne E1 » : Carte 23
- Carte de synthèse « Eolienne E2 » : Carte 24
- Carte de synthèse « Eolienne E3 » : Carte 25
- Carte de synthèse « Eolienne E4 » : Carte 26



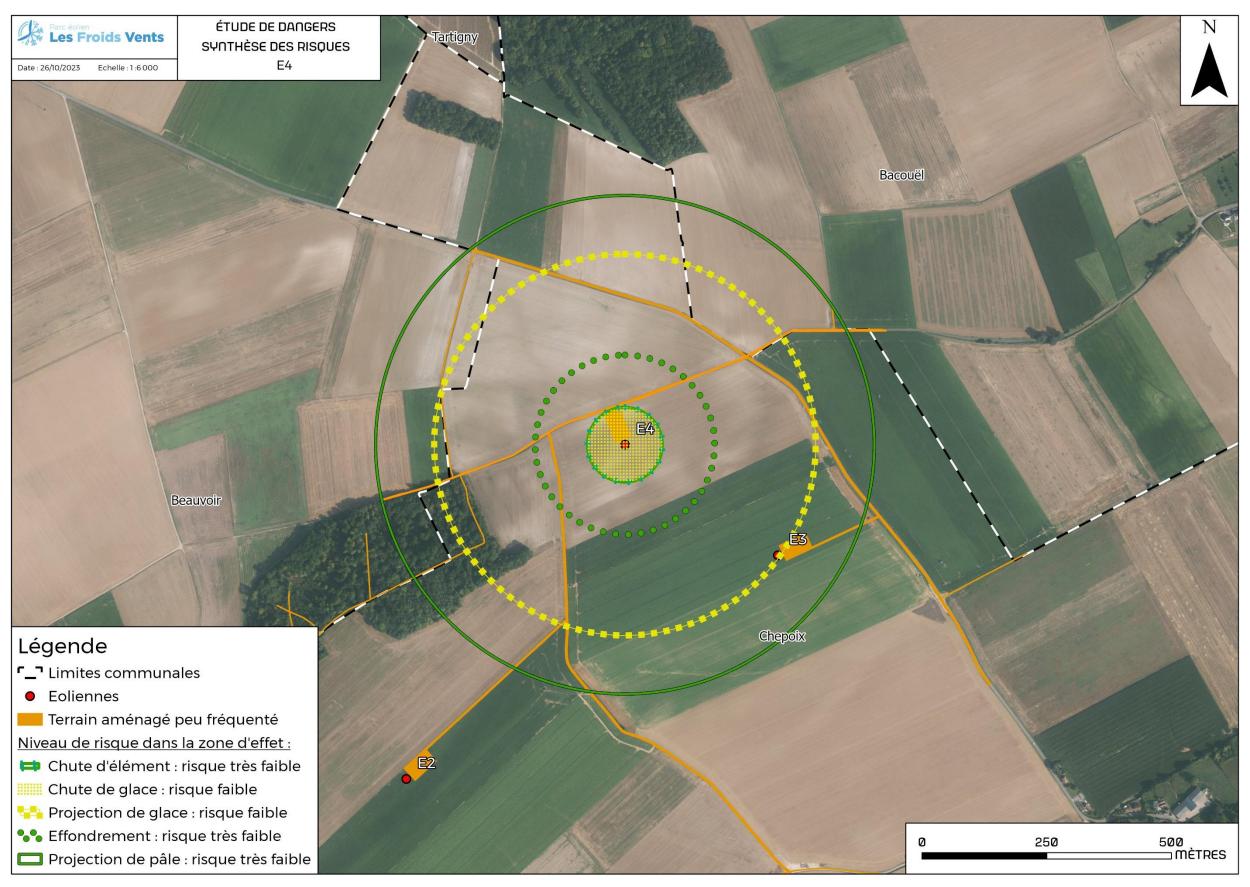
Carte 22 - Synthèse de l'ensemble des risques étudiés



Carte 23 - Carte des risques - Eolienne E1



Carte 24 - Carte des risques - Eolienne E2



Carte 25 - Carte des risques - Eolienne E3

Carte 26 - Carte des risques - Eolienne E4

Dossier de demande d'autorisation environnementale

10 CONCLUSION

À la suite de la réalisation de la matrice de criticité sur les 4 éoliennes du parc éolien Les Froids Vents, il apparaît que les accidents les plus significatifs en termes de risque (risque faible) sont liés à :

- > La chute de glace
- > La projection de glace

Ces évènements possèdent néanmoins un risque faible d'atteindre une personne non abritée et située dans la zone d'effet.

Le tableau ci-dessous représente la probabilité et la gravité de ces accidents en termes de risque.

A	Accidents majeurs les plus significatifs									
Scénario	Probabilité	Gravité								
Chute de glace	А	« Modérée » pour chacune des éoliennes du parc (Risque faible - Acceptable)								
Projection de glace	В	« Sérieux » pour l'éolienne E4 (Risque faible - Acceptable)								

Les scénarios « Chute d'éléments », « Effondrement de l'éolienne », « Projection de pales » ont également fait l'objet d'une étude détaillée (estimation de la probabilité, gravité, cinétique et intensité des événements). Ils constituent un risque acceptable pour les personnes exposées.

Plusieurs mesures de maîtrise des risques sont mises en place pour prévenir ou limiter les conséquences de ces accidents majeurs (cf. 8.6). Ces mesures de sécurité sont conformes aux prescriptions de l'arrêté ministériel relatif aux installations soumises à autorisation au titre de la rubrique 2980 des installations classées relatives à la sécurité de l'installation.

De plus, un panneautage spécifique sera mis en place à proximité des éoliennes (conformément à l'arrêté du 26/08/11) afin de prévenir les riverains et les usagers du site des risques potentiels liés à l'installation.

Le tableau suivant a pour objectif de synthétiser les principales mesures de sécurité permettant de prévenir les conséquences des accidents les plus significatifs sur le parc éolien Les Froids Vents.

Fonction de sécurité	Prévenir la mise en mouvement de l'éolienne lors de la formation de glace	Prévenir l'atteinte des personnes par la chute de glace	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction -exploitation)	Prévenir la survitesse	Prévenir les risques de dégradation de l'éolienne en cas de vent fort
Mesures de sécurité	Système de détection de la formation de glace sur les pales de l'aérogénérateur. Procédure adéquate de redémarrage.	Panneautage en pied de machine Eloignement des zones habitées et fréquentées	Contrôles réguliers des fondations et des différentes pièces d'assemblages (ex : brides ; joints, etc.) Procédures qualités Attestation du contrôle technique (procédure permis de construire)	Détection de survitesse et système de freinage	Classe d'éolienne adaptée au site et au régime de vents. Détection et prévention des vents forts et tempêtes Arrêt automatique et diminution de la prise au vent de l'éolienne par le système de conduite
Description	Système de détection redondant du givre permettant, en cas de détection de glace, une mise à l'arrêt rapide de l'aérogénérateur. Le redémarrage peut ensuite se faire soit automatiquement après disparition des conditions de givre, soit manuellement après inspection visuelle sur site.	Mise en place de panneaux informant de la possible formation de glace en pied de machines (conformément à l'article 14 de l'arrêté du 26 août 2011).	La norme IEC 61 400-1 « Exigence pour la conception des aérogénérateurs » fixe les prescriptions propres à fournir « un niveau approprié de protection contre les dommages résultant de tout risque durant la durée de vie »de l'éolienne. Ainsi la nacelle, le nez, les fondations et la tour répondent au standard IEC 61 400-1. Les pales respectent le standard IEC 61 400-1 ; 12 ; 23. Les éoliennes sont protégées contre la corrosion due à l'humidité de l'air, selon la norme ISO 9223.	Systèmes de coupures enclenchant en cas de dépassement des seuils de vitesse prédéfinis, indépendamment du système de contrôle commande.	L'éolienne est mise à l'arrêt si la vitesse de vent mesurée dépasse la vitesse maximale pour laquelle elle a été conçue.
Efficacité	100 %	100 %	100 %	100 %	100 %

Les mesures d'amélioration permettant la réduction des risques ainsi que les études complémentaires présentes dans l'étude d'impact répondent de façon efficace aux principaux scénarios d'accident majeur.

Pour les éoliennes du parc Les Froids Vents, les accidents majeurs identifiés en termes de risque constituent un risque acceptable pour les personnes exposées.

11 ANNEXES

11.1 ANNEXE 1 - MÉTHODE DE COMPTAGE DES PERSONNES POUR LA DÉTERMINATION DE LA GRAVITÉ POTENTIELLE D'UN ACCIDENT À PROXIMITÉ D'UNE ÉOLIENNE

La détermination du nombre de personnes permanentes (ou équivalent personnes permanentes) présentes dans chacune des zones d'effet se base sur la fiche n°1 de la circulaire du 10 mai 2010 relative aux règles méthodologiques applicables aux études de dangers. Cette fiche permet de compter aussi simplement que possible, selon des règles forfaitaires, le nombre de personnes exposées dans chacune des zones d'effet des phénomènes dangereux identifiés.

Dans le cadre de l'étude de dangers des parcs éoliens, cette méthode permet tout d'abord, au stade de la description de l'environnement de l'installation (partie 3.4), de comptabiliser les enjeux humains présents dans les ensembles homogènes (terrains non bâtis, voies de circulation, zones habitées, ERP, zones industrielles, commerces...) situés dans l'aire d'étude de l'éolienne considérée.

D'autre part, cette méthode permet ensuite de déterminer la gravité associée à chaque phénomène dangereux retenu dans l'étude détaillée des risques (partie 8).

Terrains non bâtis

Terrains non aménagés et très peu fréquentés (champs, prairies, forêts, friches, marais...): compter 1 personne par tranche de 100 ha.

Terrains aménagés, mais peu fréquentés (voies de circulation non structurantes, chemins agricoles, plateformes de stockage, vignes, jardins et zones horticoles, gares de triage...) : compter 1 personne par tranche de 10 hectares.

Terrains aménagés et potentiellement fréquentés ou très fréquentés (parkings, parcs et jardins publics, zones de baignades surveillées, terrains de sport (sans gradin néanmoins...) : compter la capacité du terrain et a minima 10 personnes à l'hectare.

Voies de circulation

Les voies de circulation n'ont à être prises en considération que si elles sont empruntées par un nombre significatif de personnes. En effet, les voies de circulation non structurantes (< 2000 véhicules/jour) sont déjà comptées dans la catégorie des terrains aménagés, mais peu fréquentés.

Voies de circulation automobile

Dans le cas général, on comptera 0,4 personne permanente par kilomètre exposé par tranche de 100 véhicules/jour.

Exemple: 20 000 véhicules/jour sur une zone de 500 m = $0.4 \times 0.5 \times 20$ 000/100 = 40 personnes.

					Linéaire de m	oute compris	dans la zone	d'affat (an m	1		
		100	200	300	400	500	600	700	800	900	1000
Ė	2 000	0.8	1.6	2.4	3.2	4	4.8	5.6	6.4	7,2	8
	3 000	1,2	2,4	3,6	4,8	6	7,2	8,4	9,6	10,8	12
ı	4 000	1,6	3,2	4,8	6,4	8	9,6	11,2	12,8	14,4	16
ē	5 000	2	4	6	8	10	12	14	16	18	20
véhicules/jour)	7 500	3	6	9	12	15	18	21	24	27	30
es/	10 000	4	8	12	16	20	24	28	32	36	40
틸	20 000	8	16	24	32	40	48	56	64	72	80
vé	30 000	12	24	36	48	60	72	84	96	108	120
eu	40 000	16	32	48	64	80	96	112	128	144	160
Trafic	50 000	20	40	60	80	100	120	140	160	180	200
<u>=</u>	60 000	24	48	72	96	120	144	168	192	216	240
	70 000	28	56	84	112	140	168	196	224	252	280
	80 000	32	64	96	128	160	192	224	256	288	320
[90 000	36	72	108	144	180	216	252	288	324	360
	100 000	40	80	120	160	200	240	280	320	360	400

Voies ferroviaires

Train de voyageurs : compter 1 train équivalent à 100 véhicules (soit 0,4 personne exposée en permanence par kilomètre et par train), en comptant le nombre réel de trains circulant quotidiennement sur la voie.

Voies navigables

Compter 0,1 personne permanente par kilomètre exposé et par péniche/jour.

Chemins et voies piétonnes

Les chemins et voies piétonnes ne sont pas à prendre en compte, sauf pour les chemins de randonnée, car les personnes les fréquentant sont généralement déjà comptées comme habitants ou salariés exposés.

Pour les chemins de promenade, de randonnée : compter 2 personnes pour 1 km par tranche de 100 promeneurs/jour en moyenne.

Logements

Pour les logements : compter la moyenne INSEE par logement (par défaut : 2,5 personnes), sauf si les données locales indiquent un autre chiffre.

Etablissements recevant du public (ERP)

Compter les ERP (bâtiments d'enseignement, de service public, de soins, de loisir, religieux, grands centres commerciaux, etc.) en fonction de leur capacité d'accueil (au sens des catégories du code de la construction et de l'habitation), le cas échéant sans compter leurs routes d'accès (cf. paragraphe sur les voies de circulation automobile).

Les commerces et ERP de catégorie 5 dont la capacité n'est pas définie peuvent être traités de la façon suivante :

- Compter 10 personnes par magasin de détail de proximité (boulangerie et autre alimentation, presse et coiffeur);
- Compter 15 personnes pour les tabacs, cafés, restaurants, supérettes et bureaux de poste.

Les chiffres précédents peuvent être remplacés par des chiffres issus du retour d'expérience local pour peu qu'ils restent représentatifs du maximum de personnes présentes et que la source du chiffre soit soigneusement justifiée.

Une distance d'éloignement de 500 m aux habitations est imposée par la loi. La présence d'habitations ou d'ERP ne se rencontrera peu en pratique.

Zones d'activité

Zones d'activités (industries et autres activités ne recevant pas habituellement de public) : prendre le nombre de salariés (ou le nombre maximal de personnes présentes simultanément dans le cas de travail en équipes), le cas échéant sans compter leurs routes d'accès.

Dossier de demande d'autorisation environnementale

11.2 ANNEXE 2 - TABLEAU DE L'ACCIDENTOLOGIE FRANÇAISE

Le tableau ci-dessous a été établi par le groupe de travail constitué pour la réalisation du Guide technique relatif à l'élaboration de l'étude de danger dans le cadre des parcs éolien (mai 2012). Il recense l'ensemble des accidents et incidents connus en France concernant la filière éolienne entre 2000 et 2019.

Type d'accident Date Nom du parc Département Pulssance de mise en service de mise en service service service de mise en service service service service de mise en service de mise en service de mise de mise en service service de mise de mise en service de mise de mise en service de mise de mise en service en s	Il recense l'ensem	ble des accio	lents et incidents o	connus en Fra	nce concer	nant la filiè	re éolienne e	entre 2000 et 2019.			
Effondiement Ol/10/2000 Port la Nouvelle Audie 0.5 1933 Non processor during respect during page coupuir during the page of th		Date	Nom du parc	Département		de mise en			·	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Effondrement 0/02/2002 Wormhout Nord 0,4 1997 Non Bris d'hélice et mat pilé Tempéte State vant du St	Effondrement	01/11/2000	Port la Nouvelle	Aude	0,5	1993	Non	lors d'une tempête suite à la perte d'une pale (coupure courant prolongée pendant 4	Tempête avec foudre répétée		
Considerment Cons	Rupture de pale	2001	Sallèles-Limousis	Aude	0,75	1998	Non		?	Site Vent de Colère	Information peu précise
Maintenance 0V07/2002 Port la Nouvelle Signan Aude 0,66 2000 Oui Crave électrization avec Crave électrization avec descriptions d'une delectrization avec description de provinces d'une delectrization avec description avec des rections de roughes de roug	Effondrement	01/02/2002	Wormhout	Nord	0,4	1997	Non	Bris d'hélice et mât plié	Tempête	Rapport du CGM Site Vent du Bocage	
Effondrement 28/12/2002 Sallèles - Limousis Aude 0,85 2002 Oui suite au dysfonctionnement du système de freinage Site Vent de Colère Africle de presse (Midi Libre)	Maintenance	01/07/2002		Aude	0,66	2000	Oui		la partie haute d'un transformateur 690W20kV en tension. Le mètre utilisé par la victime, déroulé sur 1,46m, s'est soudainement plié et est entré clans la zone du transformateur,	Rapport du CGM	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance
Rupture de pale 25/02/202 Salleles - Limousis Aude 0,75 1998 Non inserts sur une éolienne bipale la l'inserts sur une éolienne bipale l'inserts sur une éolienne bipale l'inserts sur trois éoliennes horceaux de pales disséminés sur l'orisé éoliennes sur l'apparet le de freinage au de freinage au l'inserts sur une éolienne bipale l'inserts sur une éoliennes l'apparet du CGM Article de presse (La Depecte du zévis)(2003) l'inserts sur une éoliennes sur tois éoliennes sur tois éoliennes sur tois éoliennes sur l'apparet de freinage au ferrienage l'inserts sur une éoliennes sur tois éoliennes sur tois éoliennes sur l'apparet du CGM Site Vent de Colère Articles de presse (La Depecte du zévis)(2003) l'inserts sur une éoliennes faite épales et l'apparet du CGM Site Vent de Colère Articles de presse (La Depecte du zévis)(2003) l'inserts sur une éoliennes sur tois écliennes de freinage de	Effondrement	28/12/2002		Aude	0,85	2002	Oui	suite au dysfonctionnement du			-
Rupture de pale 05/11/2003 Sallèles - Limousis Aude 0.75 1998 Non inserts sur trois éoliennes. Morceaux de pales disséminés sur 100 m. Effondrement 01/01/2004 Le Portel Boulogne sur Mer 20/03/2004 Loon Plage - Port de Dunkerque Rupture de pale 22/06/2004 Pleyber-Christ - Site du Finistère 0.3 2001 Non Sur-vitesse puis éjection de Rupture de pale de la fondation sur solute de la fondation de la freinage Dysfonctionnement du système de freinage Article de presse (Midi Libre du 15/11/2003) - Cassure d'une pale, chute du mât et destruction totale. Une pale tombe sur la plage et les deux autres dérivent sur 8 km. Cassure d'une pale, chute du mât et destruction totale. Une pale tombe sur la plage et les deux autres dérivent sur 8 km. Effondrement 20/03/2004 Loon Plage - Port de Dunkerque Pleyber-Christ - Site du Finistère 0.3 2001 Non Sur-vitesse puis éjection de bouts de pales de 1,5 et d'allongement des pales et retrait Articles de presse (Le Télégramme, Ouest France du	Rupture de pale	25/02/2002	Sallèles - Limousis	Aude	0,75	1998	Non	Bris de pale en bois {avec inserts sur une éolienne bipale	Tempête	Article de presse (La Dépêche du 26/03{2003)	Information peu précise
Effondrement 01/01/2004 Le Portel - Boulogne sur Mer Pas de Calais 0,75 2002 Non mât et destruction totale. Une pale tombe sur la plage et les deux autres dérivent sur 8 km. Effondrement 20/03/2004 Loon Plage - Port de Dunkerque Nord 20/03/2004 Loon Plage - Port de Dunkerque Nord 20/03/2004 Pleyber-Christ - Site vent de Colère Articles de presse (Windpoyver Monthly May 2004, La Voix du Nord du 02/01/2004) Couchage du mât d'une des 9 éoliennes suite à l'arrachement de la fondation Pleyber-Christ - Site vent de Colère Articles de presse (La Voix du Nord du 02/03/2004 et du 21/03/2004) Rupture de pale 22/06/2004 Pleyber-Christ - Site du Finistère 0,3 2001 Non Sur-vitesse puis éjection de bouts de pales de 1,5 et d'allongement des pales et retrait d'arrachement d'allongement des pales et retrait Articles de presse (Le Télégramme, Ouest France du	Rupture de pale	05/11/2003	Sallèles - Limousis	Aude	0,75	1998	Non	inserts sur trois éoliennes. Morceaux de pales disséminés	_ =		-
Effondrement 20/03/2004 Loon Plage - Port de Dunkerque Nord 0,3 1996 Site Vent de Colère éoliennes suite à l'arrachement de la fondation micropieux de la fondation, erreur de calcul (facteur de 10) Pleyber-Christ - Site du Finistère 0,3 2001 Non Sur-vitesse puis éjection de bouts de pales de 1,5 et d'allongement des 9 micropieux de la fondation, erreur de calcul (facteur de 20/03/2004) Tempête + problème d'allongement des pales et retrait Articles de presse (Le Télégramme, Ouest France du	Effondrement	01/01/2004		Pas de Calais	0,75	2002	Non	mât et destruction totale. Une pale tombe sur la plage et les	Tempête	Site Vent de Colère Articles de presse (Windpoyver Monthly May 2004,	-
Rupture de pale 22/06/2004 Site du Finistère 0,3 2001 Non bouts de pales de 1,5 et d'allongement des pales et retrait Articles de presse (Le Télégramme, Ouest France du	Effondrement	20/03/2004		Nord	0,3	1996		éoliennes suite à l'arrachement	micropieux de la fondation, erreur de calcul (facteur	Site Vent de Colère Articles de presse {La Voix du Nord du 20/03/2004 et	
	Rupture de pale	22/06/2004	Site du	Finistère	0,3	2001	Non	bouts de pales de 1,5 et	d'allongement des pales et retrait	Articles de presse (Le Télégramme, Ouest France du	
Rupture de pale 08/07/2004 Site du Finistère 0,3 2001 Non bouts de pales de 1,5 et 2,5m à d'allongement des pales et retrait Articles de presse (Le Télégramme, Ouest France du celui s'étant	Rupture de pale	08/07/2004	Site du	Finistère	0,3	2001	Non	bouts de pales de 1,5 et 2,5m à	d'allongement des pales et retrait	Articles de presse (Le Télégramme, Ouest France du	Incident identique â celui s'étant produit 15 jours auparavant
Rupture de pale 2004 Escales-Conilhac Aude 0,75 2003 Non Bris de trois pales Site Vent de Colère Information p	Rupture de pale	2004	Escales-Conilhac	Aude	0,75	2003	Non	Bris de trois pales		Site Vent de Colère	Information peu précise

					Année					Commentaire par rapport
Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	à l'utilisation clans l'étude de dangers
Rupture de pale + incendie	22/12/2004	Montjoyer- Rochefort	Drôme	0,75	2004	Non	Bris des trois pales et début d'incendie sur une éolienne {survitesse de plus de 60 tr/min)	Survitesse due à une maintenance en cours,problème de régulation, et dysfonctionnement du système de freinage	Base de données ARIA Article de presse (La Tribune du 30/12/2004 Site Vent de Colère	-
Rupture de pale	2005	Wormhout	Nord	0,4	1997	Non	Bris de pale		Site Vent de Colère	Information peu précise
Rupture de pale	08/10/2006	Pleyber-Christ - Site du Télégraphe	Finistère	0,3	2004	Non	Chute d'une pale de 20 m pesant 3 tonnes	Allongement des pales et retrait de sécurité (débridage), pas de REX suite aux précédents accidents sur le même parc	Site FED Articles de presse {Ouest France} Journal FR3	-
Incendie	18/11/2006	Roquetaillade	Aude	0,66	2001	Oui	Acte de malveillance: explosion de bonbonne de gaz au pied de 2 éoliennes. L'une d'entre elles a mis le feu en pieds de mat qui s'est propagé jusqu'à la nacelle.	Malveillance / incendie criminel Communiqués de presse Dépêche, Midi Libre	Communiqués de presse exploitant Articles de presse (La Dépêche, Midi libre)	
Effondrement	03/12/2006	Bondues	Nord	0,08	1993	Non	Sectionnement du mât puis effondrement d'une éolienne dans une zone industrielle	Tempête (vents mesurés a 137Km1- 0	Article de presse (La Voix du Nord)	-
Rupture de pale	31/12/2006	Ally	Haute-Loire	1,5	2005	Gui	Chute de pale lors d'un chantier de maintenance visant à remplacer les rotors	Accident faisant suite à une opération de maintenance	Site Vent de Colère	Ne concerne pas directement l'étude de dangers {accident pendant la phase chantier}
Rupture de pale	03/2007	Clitourps	Manche	0,6.6	2005	Gui	Rupture d'un morceau de pale de 4 m et éjection "à environ 80 m de distance dans un champ	Cause pas éclaircie	Site FED Interne exploitant	
Chute d'élément	11/10/2007	Plouvien	Finistère	1,3	2007	Non	Chute d'un élément de la nacelle {trappe de visite de 50 cm de diamètre)	Défaut au niveau des charnières de la trappe de visite. Correctif appliqué et retrofit des boulons de charnières effectué sur toutes les machines en exploitation.	Article de presse (Le Télégramme)	-
Emballement	01/03/2008	Dinéault	Finistère	0,3	2002	Non	Emballement de l'éolienne mais pas de bris de pale	Tempête + système de freinage hors service (boulon manquant)	Base de données ARIA	Non utilisable directement dans l'étude de dangers {événement unique et sans répercussion potentielle sur les personnes}
Collision avion	01/04/2008	Plouguin	Finistère	2	2004	Non	Léger choc entre l'aile d'un bimoteur Beechcraftch (liaison Ouessant-Brest) et une pale d'éolienne à l'arrêt. Perte d'une pièce de protection au bout d'aile. Aniseà l'arrêt de la machine pour inspection.	Mauvaise météo, conditions de vol difficiles (sous le plafond des 1000m imposé par le survol de la zone) et faute de pilotage (altitude trop basse)	Articles de presse (Le Télégramme, Le Poste	Ne concerne pas directement l'étude de dangers (accident aéronautique)
Rupture de pale	19/07/2008	Erize-la-Brûlée - Voie Sacrée	Meuse	2	2007	Oui	Chute de pale et projection de morceaux de pale suite à un coup de foudre	Foudre + défaut de pale Communiqué de presse	Communiqués de presse exploitant Article de presse (l'Est Républicain 22/07/2008)	
Incendie	28/08/2008	Vauvillers	Somme	2	2006	Oui	Incendie de la nacelle	Problème au niveau d 'éléments électroniques	Dépêche AFP 28/08/2008	-
Rupture de pale	26/12/2008	Raival - Voie Sacrée	Meuse	2	2007	Oui	Chute de pale		Communiqué de presse exploitant Article de presse (l'Est Républicain)	
Maintenance	26/01/2009	Clastres	Aisne	2,75	2004	Oui	Accident électrique ayant entraîné la brûlure de deux agents de maintenance	Accident électrique (explosion d'un convertisseur)	Base de données ARIA	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Rupture de pale	08/06/2009	Bollène	Vaucluse	2,3	2009	Oui	Bout de pale d'une éolienne ouvert	Coup de foudre sur la pale	Interne exploitant	Non utilisable dans les chutes ou les projections (la pale est restée accrochée)
Incendie	21/10/2009	Froidfond - Espinassiere	Vendée	2	2006	Oui	Incendie de la nacelle	Court-circuit dans transformateur sec embarqué en nacelle ?	Article de presse (Ouest France) Communiqué de presse exploitant Site FED	-
Incendie	30/10/2009	Freyssenet	Ardèche	2	2005	Cui	Incendie de la nacelle	Court-circuit faisant suite à une opération de maintenance {problème sur une armoire électrique) Dauphiné)	Base de données ARIA Site FEIJ Article de presse (Le	
Maintenance	20/04/2010	Toufflers	Nord	0,15	1993	Non	Décès d'un technicien au cours d'une opération de maintenance	Crise cardiaque	Article de presse (La Voix du Nord 20/04/2010)	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)
Effondrement	30/05/2010	Port la Nouvelle	Aude	0,2	1991	Non	Effondrement d'une éolienne	Le rotor avait été endommagé par l'effet d'une survitesse. La dernière pale {entières a pris le vent créant un balourd. Le sommet de la tour a plié et est venu buter contre la base entrainant la chute de l'ensemble.	Interne exploitant	-
Incendie	19/09/2010	Montjoyer- Rochefort	Drôme	0,75	2004	Non	Emballement de deux éoliennes et incendie des nacelles.	Maintenance en cours, problème de régulation, freinage impossible, évacuation du personnel, survitesse de -F/- 60 t lm in	Articles de presse Communiqué de presse SER-FEE	
Maintenance	15/12/2010	Pouillé-les- Côteaux	Loire Atlantique	2,3	2010	Oui	Chute de 3 m d'un technicien de maintenance à l'intérieur de l'éolienne. L'homme de 22 ans a été secouru par le GRIfvIP de Nantes. Aucune fracture ni blessure grave.		Interne SER-FEE	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance,
Transport	31/05/2011	Mesvres	Saône-et- Loire	-	-	-	Collision entre un train régional et un convoi exceptionnel transportant une pale d'éolienne, au niveau d'un passage à niveau Aucun blessé		Article de presse (Le Bien Public 01/06/2011)	enmceernnte directement l'péatsu d e de e dangers (accident de transport hors site éolien)
Rupture de pale	14/12/2011	Non communiqué	Non communiqué	2,5	2003	Cui	Pale endommagée par la foudre. Fragments retrouvés par l'exploitant agricole à une distance n'excédant pas 300 m.	Foudre	Interne exploitant	Information peu précise sur la distance d'effet
Incendie	03/01/2012	Non communiqué	Non communiqué	2,3	2006	Oui	Départ de feu en pied de tour. Acte de vandalisme : la porte de l'éolienne a été découpée pour y introduire des pneus et de l'huile que l'on a essayé d'incendier. Le feu ne s'est pas propagé, dégâts très limités et restreints au pied de la tour.	Malveillance / incendie criminel	Interne exploitant	Non utilisable directement dans l'étude de dangers (pas de propagation de rince- idie]
Rupture de pale	05/01/2012	Widehem	Pas-de-Calais	0,75	2000	Non	Bris de pales, dont des fragments ont été projetés jusqu'à 380 m. Aucun blessé et aucun dégât matériel (en dehors de l'éolienne).	Tempête + panne d'électricité	Article de presse (La Voix du Nord 06/01/2012) Vidéo Dailymotion Interne exploitant	-

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Rupture de pale	15/05/2012	Chemin d'Ablis	Eure-et-Loir	2	2008	Oui	Chute d'une pale de 9 tonnes et rupture du roulement raccordant la pale au hub	Traces de corrosion clans les trous d'alésage traversant une des bagues du roulement	Articles de presse (le Figaro 22/05/2012) et ARIA {n°42919}	-
Effondrement de la tour	30/05/2012	Non communiqué	Aude	0,2	1991	Non	Effondrement de la tour en treillis de 30 m de haut	Rafales de vent à 130 km/h observées durant la nuit	ARIA (n°43110}	-
Projection d'un élément de la pale	01/11/2012	Non communiqué	Cantal	2,5	2011	Gui	Projection d'un élément de 400 g constitutif d'une pale d'éolienne â 70 m du mât		ARIA (n°43120}	-
Incendie	05/11/2012	Non communiqué	Aude	0,66	-	-	Projections incandescentes enflamment 80 m2 de garrigue environnante	Câbles électriques non résistants au feu à l'intérieur du mât	ARIA (n°43228)	-
Incendie	17/03/2013		Marne		2011	Oui	Feu clans la nacelle dune éolienne. Une des pales tombe au sol, une autre me-iace de tomber,	Défaillance électrique	ARIA (n°43630}	L'exploitant et la société. chargée de la maintenance étucl lent la possibilité d'installer des détecteurs de fumées dans les éoliennes.
Incendie	09/01/2014		Champagne- Ardenne	2,5	-	-	Feu se déclarant vers 13 h a u niveau de la partie moteur d'une éolienne.	Incident électrique	ARIA (n°44831)	-
Rupture de pale	20/01/2014		Aude				Chute de pale liées à la rupture d'une pièce à la base de la pale	Usure prématurée	ARLA (n°44870)	Changement du design des pièces
Rupture de pale	14/11/2014	Sources de la Loire	Ardèche				Chute d'une pale un jour d'orage ou les vents atteignent 130km/h		ARIA (n°45960)	
Projection d'un élément de la pale	05/12/2014		Aude				Lors d'une inspection, des techniciens de maintenance constatent le détachement de l'extrémité d'une pale	Défaillance matérielle ou à un décollage sur les plaques en fibre de verre	ARIA (n°46030)	
Incendie	24/08/2015		Eure-et-Loir		2007		Le moteur d'une éolienne a pris feu		Article de presse (la république du centre 24/08/2015)	
Chute d'élément	10/11/2015	Ménil-la-Hargne	Meuse	10,5	2007		Chute des trois pales et du rotor d'une éolienne		Article de presse (France 3 Lorraine 14/11/2015 et L'est républicain 13/11/2015)	
Rupture de pale	07/02/2016	Conilhac- Corbières	Aude				Chute de l'aérofrein d'une des pales	Rupture du point d'attache du système mécanique de commande de l'aérofrein	ARIA (n°47675)	
Chute de pale et projection de pale	08/02/2016	Dineault	Finistère	0,3	1999		Une pale chute au sol, un autre se déchire et est retrouvé à 40m du pied du mât		ARIA (n°47680)	
Chute de pale	07/03/2016	Calanhel	Côtes- d'Armor	0,8			Rupture et chute de la pale à 5m du mât.	Rupture du système d'orientation	ARIA (n°47763)	
Chute de pale	18/01/2017	Nurlu	Somme				Décrochage et chute d'une partie de pale		Article de presse (France 3 Picardie 19/01/2017)	
Rupture de pale	27/02/2017	Parc éolien de Levoncourt	Meuse	2	2011		La pointe d'une pale d'éolienne s'est rompue pendant un orage	Rafale de vent	de données ARIA ite 49359)	
Incendie	06/06/2017	Allonnes	Eure-et-Loir				Incendie du moteur de l'éolienne		Article de presse L'écho républicain, 06/06/2017)	
Chute de pale	03/08/2017	Parc de l'Osière, Commune de Priez	Aisne				Rupture d'une partie de la pale d'éolienne		Article de presse (L'ardennais 10/08/2017, l'Union 10/08/2017)	
Effondrement de l'éolienne	01/01/2018	Parc éolien de Bouin	Vendée	2,4	2003		Effondrement de l'éolienne	Tempête	Presse	

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Chute de pale	04/01/2018	Parc éolien de Rampant	Meuse	2	2008		Chute d'une pale d'éolienne	Episode venteux	Base de données ARIA (n°50905 —04/01/2018}	Les morceaux les plus éloignés sont ramassés à 200 m
Chute de l'aérofrein d'une pale d'éolienne	06/02/2018	Parc éolien de Conilhac- Corbières	Aude	2,3	2014		L'aérofrein d'une pale d'éolienne a chuté au sol	Défaut sur l'électronique de puissance	Base de données ARIA (n°51122 —06/02/2018)	
Incendie	01/06/2018	Parc éolien de Marsanne	Drôme	2	2008		Incendie	Incendie criminel	Communiqué de presse (RES, 01/06/2018	
Incendie	05/06/2018	Parc éolien du Causse d'Aumelas	Hérault	1,45	2013	Non	Incendie de la nacelle et chute d'éléments au sol	Incendie électrique	Base de données ARIA {n'51681 —05/0612018)	
Incendie	03/08/2018	Parc des Monts de l'Ain	Ain	2,05	2017		Incendie	Incendie criminel	France 3 Auvergne-RhôneAlpes (03/08/2018)	
Effondrement	07/11/2018	Parc éolien de la Vallée du Moulin, commune de Guigneville	Loiret	3	2010		Effondrement de l'éolienne	Effondrement de l'éolienne	Article de presse (FranceInfo Centre Val de Loire, 07/11/2018)	
Incendie	03/01/2019	Parc éolien de la Limouzinière	Loire- Atlantique				Incendie au niveau dune nacelle d'éolienne	Avarie sur la génératrice (Détection dune usure de roulement par le système de surveillance vibratoire	Base de données ARIA (n°52838 —03/01/2019)	Débris enflammés au sol
Chute d'un fragment de pale	17/01/2019	Parc éolien du Bambesch	Moselle	2	2007		Bris et projection de plusieurs morceaux de pale	Défaut d'adhérence dû à un manque de matière entre la coque en fibre de verre et le coeur de la pale serait .à. l'origine de cette rupture	Le Républicain Lorrain (30/01/2019) Base de données ARIA (n°52957 —17/01/2019)	
Incendie	20/01/2019	Parc éolien de Roussas	Drôme				Feu se déclare sur 2 éoliennes d'un parc cûmposé de 12 aérogénérateurs	Acte criminel	Base de données ARIA (n"52993 —20/01/2019)	
Effondrement	23/01/2019	Parc éolien de Boutavent	Oise	1.2	2011		Mât de l'éolienne plié en 2 probablement dû à un problème sur le générateur	Effondrement de l'éolienne	France 3 Hauts-de-France Base de données ARIA (n°53010-23/01/2019)	Débris retrouvés dans un rayon de 300 m autour de l'éolienne
Chute de pale	30/01/2019	Parc éolien de Roquetaillade	Aude		2001	Non	La pale d'un aénogénérateur a chuté au sol.	Défaillance matérielle	Ladepeche.fr (19/02/2019) + Base de données ARIA (n°53139 —30/01/2019)	Incidents similaires déjà produits sur ce parc éolien
Surveillance - Fissurations sur des roulements de pales d'éoliennes	12/02/2019	Parc éolien de Autechaux	Doubs				Contrôles mettent en évidence 6 fissurations sur des roulements de pale, positionnés entre la base de la pale et le moyeu.	L'origine des fissurations serait un défaut d'alésage qui, sous contrainte, conduirait à une fissuration par fatigue de la bague au niveau d'une zone d'amorçage propice constituée par les trous d'introduction des billes dans les roulements	Base de données ARIA (n°53562 - 12/02/2019)	A la suite d'une fissuration constatée sur une bague extérieure de roulement de pale d'une éolienne d'un parc éolien de même technologie hors de France, l'exploitant réalise des inspections de cette pièce sur 3 de ses parcs éoliens comprena nt 43 éoliennes.
Foudre	02/04/2019	Parc éolien de Equancourt	Somme				Impact de foudre endommageant le revêtement d'une pale d'une éolienne sur un parc de 12 éoliennes	Episode orageux (foudre)	Base de données ARIA (n°53429 -02/04/2019)	
Maintenance	15/04/2019	Parc éolien de Chailly-sur- Armançon	Côte d'Ür				Sous-traitant électrisé par un courant de 20 000 V dans une éolienne		Base de données ARIA (n°53479 - 15/04/2019)	

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Incendie	18/06/2019	Parc éolien de Quesnoy-sur- Airaines	Somme				Feu se déclare sur une éolienne située dans un parc éolien	Court-circuit sur un condensateur est à l'origine du sinistre	Base de données ARIA (n°53857 -18/06/2019)	
Court-circuit suite à opération de maintenance	25/06/2019	Parc éolien de Ambon	Morbihan	1,7	2008		Opération de maintenance au niveau du système d'orientation des pales d'une éolienne Feu se déclare au niveau de la nacelle d'une éolienne	Des fuites d'huile avaient été constatées en 2015 et 2018 sans avoir été nettoyées	Base de données ARIA [n°53850 - 25/06/2019)	Des éléments structurels de l'éolienne chutent au sol
Chute d'un fragment de pale	27/06/2019	Parc éolien de Charly-sur-Marne	Aisne				Lors de la mise à l'arrêt d'une éolienne (angle anormal), le bout de la pale abîmée est projeté en 2 morceaux, l'un à 15 m de l'éolienne, l'autre à 100 m dans l'enceinte du parc éolien	La vitesse du vent au moment du détachement était comprise entre 6 et 7 m/sa température extérieure était de 22 °C sachant que de très fortes chaleurs sévissaient pendant la période.	Base de données ARIA [n°53894 - 27/06/2019)	
Foudre	03/07/2019	Sigean	Aude	0.7	2000		A 18 h, une éolienne d'un parc s'arrête automatiquement à la suite d'une alarme vibration provoquée par un impact de foudre. Le lendemain, à 10 h, l'exploitant constate un impact sur le milieu de la pâle et une ouverture du bout de pâle sur 2 m. L'exploitant découpe l'extrémité de la pale endommagée pour éviter sa rupture complète. Le morceau de pale est stocké en vue d'une expertise. La machine est à l'arrêt et le rotor en position de sécurité.	Impact de foudre	Base ARIA	
Rupture de pale	04/09/2019	Escalles	Aude	0.8	2003		L'arrêt d'urgence d'une éolienne se déclenche sans cause identifiée. L'arrêt de l'éolienne est anormalement brutal si bien que deux aérofreins se détachent d'une des pales de l'éolienne, l'un étant retrouvé à 5 m du pied de l'éolienne, l'autre à 65 m.	Cause probable de l'accident non évoquée	Base ARIA	
Chute d'élément	28/11/2019	Hangest-en- Santerre	Somme	2.0	2015	Oui	Dans un parc éolien, le capot se situant à l'extrémité de la nacelle d'une éolienne se décroche et tombe au sol. L'éolienne concernée ainsi que l'ensemble du parc sont mises à l'arrêt. L'exploitant et l'opérateur de maintenance inspectent l'éolienne et l'ensemble du parc.	Cause probable de l'accident non évoquée	Base ARIA	
Rupture de pale	09/12/2019	Theil-Rabier	Charente	2.0	2016	Oui	Une pale d'éolienne se rompt et chute au sol	Cause probable de l'accident non évoquée.	https://www.charentelibre.fr/2019/12/14/la-foret-de- tesse-une-pale-de-l-eolienne-n-5-s-est-brisee-une- expertise-est-lancee,3531693.php	
Incendie	16/12/2019	Santilly	Eure-et-Loir	2.5	2007		De la fumée s'échappe de la nacelle d'une éolienne, les pompiers n'interviennent pas. La nacelle n'est pas brulée.	L'expert en assurance suppose une combustion sans flamme et estime la température atteinte en nacelle en dessous de 100°C. Cause probable non évoquée	https://www.lechorepublicain.fr/santilly-28310/	
Incendie	17/12/2019	Ambonville	Haute-Marne				A 14h20, un feu se déclare en partie basse d'une éolienne. Les pompiers interviennent à l'aide d'un extincteur à poudre.	L'origine du départ de feu serait liée à une défaillance électrique.	Base ARIA	

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Chute d'élément	22/01/2020	Saint-Seine- l'Abbaye	Côte d'Or				Au cours d'une patrouille de routine à 11 h, un gendarme trouve un joint de pale au pied d'une éolienne. Il contacte l'exploitant par le numéro d'urgence	L'événement est causé par une défaillance du collier de serrage sous dimensionné par rapport aux contraintes dans le temps.		
Chute de pale	11/02/2020	Montbrehain et Beaurevoir	Aisne	2.0	2013		Une pale a cédé sous les rafales de vent, débris observés à 100m.	Effet de le tempête Ciara	https://www.ventdesnoues.org/2020/02/11/la-pale- dune-eolienne-se-brise-a-cause-du-vent-laisne- nouvelle-11-fevrier-2020/	
Incendie	29/02/2020	Boisbergue	Somme	2.0	2015	Oui	Un feu s'est déclaré dans le tronc de l'éolienne. Il est resté concentré entre le pied et la tête du mât. Les pales n'ont pas été touchées par les flammes. L'éolienne est hors service.	Le feu serait d'origine électrique.	https://www.francebleu.fr/infos/faits-divers-justice/ un-feu-a-l-interieur-du-tronc-d-une-eolienne- aboisbergues-pres-de-bernaville-1583001669	
Incendie	24/03/2020	Flavin	Aveyron	2.0	2010	Oui	Un feu s'est déclaré dans la génératrice en flammes	Défaillance dans la génératrice	https://www.centrepresseaveyron.fr/2020/03/24/une-eolienne-en-feu-au-parc-de-la-bouleste-a-flavin,8816364.php	
Fuite d'huile	10/04/2020	Ruffiac	Morbihan				Une entreprise responsable de la maintenance d'un parc éolien constate une fuite d'huile hydraulique au niveau de la nacelle d'une éolienne. 40 I d'huile s'écoulent le long du mât jusqu'au massif de fondation. L'exploitant du parc est alerté. Il mandate la société de maintenance de réaliser le nettoyage des zones affectées. Il n'y a pas d'atteinte au sol.	L'origine de la fuite est un défaut au niveau de l'accumulateur de l'éolienne.	Base ARIA	
Incendie	20/04/2020	Le Vauclin	Martinique				Peu avant 14 h, un feu se déclare sur le générateur d'une éolienne déposée au sol en vue de son démantèlement, dans un parc éolien comportant 4 éoliennes. Le parc est à l'arrêt depuis le début de l'année 2020. L'incendie de l'huile du transformateur électrique se propage aux broussailles à proximité. Les secours ne pouvant intervenir à cause de la présence d'électricité, un technicien de la société propriétaire de l'éolienne se rend sur place pour couper le courant électrique. Ils évitent la propagation de l'incendie aux alentours, puis éteignent l'incendie vers 16 h une fois l'installation mise hors tension	Un court-circuit dû à un manicou (famille des marsupiaux) serait à l'origine de l'incendie.	Base ARIA	
Rupture de pale	30/04/2020	Plouarzel	Finistère	0.66	2000		Une pale d'éolienne a présenté une pliure inquiétante, laissant penser qu'elle pourrait casser et tomber au sol. De forts craquements sont, par ailleurs, audibles à 300 m de l'éolienne.	On ne connaît pas la cause de cette détérioration.	https://www.letelegramme.fr/finistere/plouarzel/une- pale-severement-endommagee-au-parc-eolien-a- plouarzel-30-04-2020-12545960.php	

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Chute de pale	27/06/2020	Plémet	Côtes d'Armor	2.5	2014	Oui	Une pale est tombée	Cause inconnue	https://www.letelegramme.fr/cotes-darmor/plemet/	
Dégagement de fumée en nacelle d'une éolienne	01/08/2020	ISSANLAS	Ardèche						https://www.aria.developpement- durable.gouv.fr/fiche_detaillee/55984-2/	
Rupture de pale	12/01/2021	SAINT-GEORGES- SUR-ARNON	Indre						https://www.aria.developpement- durable.gouv.fr/accident/56597/	
Casse d'une pale d'une éolienne	12/02/2021	PRIEZ	Aisne					Défaut de réparation au niveau de bord de fuite	https://www.aria.developpement- durable.gouv.fr/accident/56765/	
Chute de pale	13/02/2021	РАТАҮ	Loiret						https://www.aria.developpement- durable.gouv.fr/accident/56753/	
Incendie dans le local base vie d'un parc éolien	17/02/2021	SAINTE-ROSE	La Réunion				Vers 23h30, un feu se déclare dans le local base vie d'un parc éolien. Les pompiers interviennent. Un déversement d'huile et de graisse (6 m³) est visible sur 20 m devant le local. L'accès à la zone est interdit. L'exploitant met en arrêt sécurité le parc éolien et déploie des kits anti-pollution.		https://www.aria.developpement- durable.gouv.fr/accident/57040/	
Défaut sur un rotor d'éolienne	14/09/2021	TREILLES	Aude				Une défaillance dans le mécanisme du rotor d'une éolienne (boîte de vitesse) provoque un blocage de ce dernier. La machine est orientée face au vent. L'aérogénérateur est arrêté. Dans l'attente du démontage complet du rotor et en raison d'un risque de déséquilibre susceptible d'entraîner la chute de toute ou partie de l'éolienne, un balisage est mis en place et l'accès est interdit. La boîte de vitesse est sanglée pour éviter qu'elle ne s'ouvre davantage. Le rotor doit être déposé sous 2 mois.		https://www.aria.developpement- durable.gouv.fr/accident/58012/	
Chute d'un élément en fibre d'une éolienne	20/10/2021	COOLE	Marne				Vers 10h30, une partie en fibre du cône de nez d'une éolienne chute dans un parc éolien. Un périmètre de sécurité est mis en place. Le parc éolien est à l'arrêt, en attente d'inspections. Toutes les machines vont être inspectées avant une remise en fonctionnement. Le cône de nez incriminé est remplacé.		https://www.aria.developpement- durable.gouv.fr/accident/58388/	
Casse d'une pale d'éolienne	21/10/2021	AUCHAY-SUR- VENDEE	Vendée						https://www.aria.developpement- durable.gouv.fr/accident/58114/	

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Chute de pale	03/12/2021	LA SOUTERRAINE	Creuse						https://www.aria.developpement- durable.gouv.fr/accident/58412/	
Chute d'un aérofrein d'une éolienne	24/12/2021	FECAMP	Seine- Maritime						https://www.aria.developpement- durable.gouv.fr/accident/58446/	
Incident mécanique sur une éolienne	03/04/2022	OMISSY	Aisne						https://www.aria.developpement- durable.gouv.fr/accident/59622/	
Incendie sur une éolienne	20/04/2022	SAINT- GERMAINMONT	Ardennes						https://www.aria.developpement- durable.gouv.fr/accident/59413/	
Chute de pale	30/04/2022	ROQUETAILLADE- ET-CONILHAC	Aude						https://www.aria.developpement- durable.gouv.fr/accident/59013/	
Feu sur une éolienne	05/08/2022	PONT-MELVEZ	Côtes d'Armor				Vers 13h30, un feu se déclare dans le rotor d'une éolienne au sein d'un parc éolien. Un important panache de fumée se dégage. Les pompiers se rendent sur place mais ont pour consigne de ne pas intervenir sur l'éolienne et de la laisser brûler. Ils mettent en place un périmètre de sécurité et sécurisent tout départ de feu dans les champs en raison de la projection de nombreuses étincelles. L'exploitant arrête le parc. Un arrêté municipal d'interdiction à l'accès du parc est rédigé. Une société privée effectue des rondes à partir de 20 h pour une semaine. 400 m² de végétation ont brûlé. Le rotor et les pales sont détruits.		https://www.aria.developpement- durable.gouv.fr/accident/59452/	
Fuite d'huile dans un parc éolien	10/08/2022	CUSSY-LES- FORGES	Yonne				Vers 1 h, une fuite d'huile se produit dans la nacelle d'une éolienne. L'alerte est donnée par le déclenchement d'une alarme. Le bloc vérin de la pale est détaché. La machine est mise à l'arrêt. L'huile coule en pied de tour, sans atteindre le sol environnant. La turbine reste arrêtée jusqu'à la livraison des pièces. Un kit antipollution est installé par les techniciens.	Tuyau hydraulique cassé à la suite d'un problème de montage.		
Feu sur une éolienne	22/08/2022	COOLE	Marne				En début d'après-midi, lors de travaux d'entretien, la nacelle d'une éolienne de 90 m de haut prend feu.	Explosion du convertisseur d'électricité	https://www.aria.developpement- durable.gouv.fr/accident/59533/	

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Fuite d'huile sur une éolienne	19/09/2022	LES TOUCHES	Loire- Atlantique				Vers 12 h, au cours d'une opération de maintenance programmée, les techniciens d'un parc éolien constate une traînée d'huile sur le mât d'une éolienne. Sur la nacelle, un suintement au niveau du sertissage d'un flexible du circuit de refroidissement de la boîte de vitesses est visible (pression : 3 bar). L'éolienne est arrêtée.	Flexible défaillant	https://www.aria.developpement- durable.gouv.fr/accident/59719/	
Impact de foudre sur une éolienne	23/11/2022	PLELAN-LE- GRAND	Ille-et-Vilaine				Vers 22h30, un orage touche un réseau électrique et des éoliennes. Une carte électronique est détériorée et la machine s'arrête. Deux jours plus tard, le bout d'une pale se plie. Un impact de foudre est visible, celle-ci a traversé le bout de la pale.	Orage et impact foudre		
Incendie sur une éolienne	09/01/2023	PETIT-CAUX	Seine- Maritime				Vers 15 h, des techniciens sont envoyés sur un parc éolien à la suite d'une alarme incendie sur une éolienne. À leur arrivée, ils constatent un dégagement de fumée au moment de l'ouverture de la porte de la machine. La machine et l'ensemble du parc sont mis à l'arrêt. Le dégagement de fumée noire est contenu à l'intérieur de la machine. Ni flammes visibles, ni fumées ne s'échappent à l'extérieur.	Point chaud au niveau des câbles de puissance de 660 V sur la nacelle à 80 m de hauteur et qui prend 5 niveaux à l'intérieur du mat.	https://www.aria.developpement- durable.gouv.fr/accident/60172/	
Projection de glace sur un parc éolien	17/01/2023	LE BORN	Lozère				Projection de glace par une éolienne	Défaillance du système de détection de glace mettant habituellement à l'arrêt les éoliennes	https://www.aria.developpement- durable.gouv.fr/accident/60248/	
Dégagement de fumée sur un parc éolien	31/01/2023	TIGNY-NOYELLE	Pas-de-Calais				Vers 14h30, lors d'un redémarrage à la suite d'une opération de maintenance, un dégagement de fumée se produit à l'intérieur d'une éolienne dans un boîtier électrique de 20 000 V. Les opérateurs éteignent le feu.		https://www.aria.developpement- durable.gouv.fr/accident/60343/	
Endommagement d'une pale d'éolienne	23/02/2023	MOEUVRES	Nord				Des morceaux de pâles sont retrouvés au sol		https://www.aria.developpement- durable.gouv.fr/accident/60358/	
Feu sur une éolienne	09/03/2023	FROIDFOND	Vendée				Déclaration d'un feu dans la nacelle lors de la remise sous tension d'une éolienne. L'incendie se propage à une pale de 40 m de longueur. La nacelle est détruite, il n'y a pas eu de chute de composant autres que des débris de coque avec des envols. Une odeur d'hydrocarbures subsiste et des traces de coulures d'huiles sont présentes le long du mat.		https://www.aria.developpement- durable.gouv.fr/accident/60363/	

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation clans l'étude de dangers
Incendie d'éolienne	20/03/2023	CHATENAY	Eure-et-Loir				Avant 7 h, un feu se déclare au niveau du moteur de la nacelle d'une éolienne à 80 m de haut. La machine est en drapeau. Mise à l'arrêt de l'intérieur du parc.		https://www.aria.developpement- durable.gouv.fr/accident/60413/	

Dossier de demande d'autorisation environnementale

11.3 ANNEXE 3 - SCÉNARIOS GÉNÉRIQUES ISSUS DE L'ANALYSE PRÉLIMINAIRE DES RISQUES

Cette partie apporte un certain nombre de précisions par rapport à chacun des scénarios étudiés par le groupe de travail technique dans le cadre de l'analyse préliminaire des risques.

Le tableau générique issu de l'analyse préliminaire des risques est présenté dans la partie 7.4. de la trame type de l'étude de dangers. Il peut être considéré comme représentatif des scénarios d'accident pouvant potentiellement se produire sur les éoliennes et pourra par conséquent être repris à l'identique dans les études de dangers.

La numérotation des scénarios ci-dessous reprend celle utilisée dans le tableau de l'analyse préliminaire des risques, avec un regroupement des scénarios par thématique, en fonction des typologies d'événement redoutés centraux identifiés grâce au retour d'expérience par le groupe de travail précédemment cité (« G » pour les scénarios concernant la glace, « I » pour ceux concernant l'incendie, « F » pour ceux concernant les fuites, « C » pour ceux concernant la chute d'éléments de l'éolienne, « P » pour ceux concernant les risques de projection, « E » pour ceux concernant les risques d'effondrement).

Scénarios relatifs aux risques liés à la glace (G01 et G02)

Scénario G01

En cas de formation de glace, les systèmes de préventions intégrés stopperont le rotor.

La chute de ces éléments interviendra donc dans l'aire surplombée par le rotor, le déport induit par le vent étant négligeable.

Plusieurs procédures/systèmes permettront de détecter la formation de glace :

- Système de détection de glace
- Arrêt préventif en cas de déséquilibre du rotor
- Arrêt préventif en cas de givrage de l'anémomètre.

Note : Si les enjeux principaux seront principalement humains, il conviendra d'évoquer les enjeux matériels, avec la présence éventuelle d'éléments internes au parc éolien (poste de livraisons, sous-stations), ou extérieurs sous le surplomb de la machine.

Scénario G02

La projection de glace depuis une éolienne en mouvement interviendra lors d'éventuels redémarrage de la machine encore « glacée », ou en cas de formation de glace sur le rotor en mouvement simultanément à une défaillance des systèmes de détection de givre et de balourd.

Aux faibles vitesses de vents (vitesse de démarrage ou « cut in »), les projections resteront limitées au surplomb de l'éolienne. A vitesse de rotation nominale, les éventuelles projections seront susceptibles d'atteindre des distances supérieures au surplomb de la machine.

Scénarios relatifs aux risques d'incendie (101 à 107)

Les éventuels incendies interviendront dans le cas ou plusieurs conditions seraient réunies

(Ex : Foudre + défaillance du système parafoudre = Incendie).

Le moyen de prévention des incendies consiste en un contrôle périodique des installations.

Dans l'analyse préliminaire des risques seulement quelques exemples vous sont fournis.

La méthodologie suivante pourra aider à déterminer l'ensemble des scenarios devant être regardé :

- Découper l'installation en plusieurs parties : rotor, nacelle, mât, fondation et poste de livraison;
- Déterminer à l'aide de mot clé les différentes causes (cause 1, cause 2) d'incendie possibles.

L'incendie peut aussi être provoqué par l'échauffement des pièces mécaniques en cas d'emballement du rotor (survitesse).

Plusieurs moyens sont mis en place en matière de prévention :

- Concernant le défaut de conception et fabrication : Contrôle qualité
- Concernant le non-respect des instructions de montage et/ou de maintenance : Formation du personnel intervenant, Contrôle qualité (inspections)
- Concernant les causes externes dues à l'environnement : Mise en place de solutions techniques visant à réduire l'impact. Suivant les constructeurs, certains dispositifs sont de série ou en option. Le choix des options est effectué par l'exploitant en fonction des caractéristiques du site.

L'emballement peut notamment intervenir lors de pertes d'utilités. Ces pertes d'utilités peuvent être la conséquence de deux phénomènes :

- Perte de réseau électrique : l'alimentation électrique de l'installation est nécessaire pour assurer le fonctionnement des éoliennes (orientation, appareils de mesures et de contrôle, balisage, ...) ;
- Perte de communication : le système de communication entre le parc éolien et le superviseur à distance du parc peut être interrompu pendant une certaine durée.

Concernant la perte du réseau électrique, celle-ci peut être la conséquence d'un défaut sur le réseau d'alimentation du parc éolien au niveau du poste source.

En fonction de leurs caractéristiques techniques, le comportement des éoliennes face à une perte d'utilité peut être différent (fonction du constructeur). Cependant, deux systèmes sont couramment rencontrés :

- Déclenchement au niveau du rotor du code de freinage d'urgence, entrainant l'arrêt des éoliennes ;
- Basculement automatique de l'alimentation principale sur l'alimentation de secours (batteries) pour arrêter les aérogénérateurs et assurer la communication vers le superviseur.

Concernant la perte de communication entre le parc éolien et le superviseur à distance, celle-ci n'entraîne pas d'action particulière en cas de perte de la communication pendant une courte durée.

En revanche, en cas de perte de communication pendant une longue durée, le superviseur du parc éolien concerné dispose de plusieurs alternatives dont deux principales :

- Mise en place d'un réseau de communication alternatif temporaire (faisceau hertzien, agent technique local...);
- Mise en place d'un système autonome d'arrêt à distance du parc par le superviseur.

Les solutions aux pertes d'utilités étant diverses, les porteurs de projets pourront apporter dans leur étude de danger une description des protocoles qui seront mis en place en cas de pertes d'utilités.

Scénarios relatifs aux risques de fuites (F01 à F02)

Les fuites éventuelles interviendront en cas d'erreur humaine ou de défaillance matérielle.

Une attention particulière est à porter aux mesures préventives des parcs présents dans des zones protégées au niveau environnemental, notamment en cas de présence de périmètres de protection de captages d'eau potable (identifiés comme enjeux dans le descriptif de l'environnement de l'installation).

Dans ce dernier cas, un hydrogéologue agréé devra se prononcer sur les mesures à prendre en compte pour préserver la ressource en eau, tant au niveau de l'étude d'impact que de l'étude de danger.

Plusieurs mesures pourront être mises en place (photographie du fond de fouille des fondations pour montrer que la nappe phréatique n'a pas été atteinte, comblement des failles karstiques par des billes d'argile, utilisation de graisses végétales pour les engins, ...).

Dossier de demande d'autorisation environnementale

Scénario F01

En cas de rupture de flexible, perçage d'un contenant ..., il peut y avoir une fuite d'huile ou de graisse ... alors que l'éolienne est en fonctionnement. Les produits peuvent alors s'écouler hors de la nacelle, couler le long du mât et s'infiltrer dans le sol environnant l'éolienne.

Plusieurs procédures/actions permettront d'empêcher l'écoulement de ces produits dangereux :

- Vérification des niveaux d'huile lors des opérations de maintenance
- Détection des fuites potentielles par les opérateurs lors des maintenances
- Procédure de gestion des situations d'urgence

Deux événements peuvent être aggravants :

- Ecoulement de ces produits le long des pales de l'éolienne, surtout si celle-ci est en fonctionnement. Les produits seront alors projetés aux alentours.
- Présence d'une forte pluie qui dispersa rapidement les produits dans le sol.

Scénario F02

Lors d'une maintenance, les opérateurs peuvent accidentellement renverser un bidon d'huile, une bouteille de solvant, un sac de graisse ... Ces produits dangereux pour l'environnement peuvent s'échapper de l'éolienne ou être renversés hors de cette dernière et infiltrer les sols environnants.

Plusieurs procédures / actions permettront d'empêcher le renversement et l'écoulement de ces produits :

- Kits anti-pollution associés à une procédure de gestion des situations d'urgence
- Sensibilisation des opérateurs aux bons gestes d'utilisation des produits

Ce scénario est à adapter en fonction des produits utilisés.

Evénement aggravant : fortes pluies qui disperseront rapidement les produits dans le sol.

Scénarios relatifs aux risques de chute d'éléments (CO1 à CO3)

Les scénarii de chutes concernent les éléments d'assemblage des aérogénérateurs : ces chutes sont déclenchées par la dégradation d'éléments (corrosion, fissures, ...) ou des défauts de maintenance (erreur humaine). Les chutes sont limitées à un périmètre correspondant à l'aire de survol.

Scénarios relatifs aux risques de projection de pales ou de fragments de pales (PO1 à PO6)

Les événements principaux susceptibles de conduire à la rupture totale ou partielle de la pale sont liés à 3 types de facteurs pouvant intervenir indépendamment ou conjointement :

- Défaut de conception et de fabrication
- Non-respect des instructions de montage et/ou de maintenance
- Causes externes dues à l'environnement : glace, tempête, foudre...

Si la rupture totale ou partielle de la pale intervient lorsque l'éolienne est à l'arrêt on considère que la zone d'effet sera limitée au surplomb de l'éolienne

L'emballement de l'éolienne constitue un facteur aggravant en cas de projection de tout ou partie d'une pale. Cet emballement peut notamment être provoqué par la perte d'utilité décrite au 2.2 de la présente partie C (scénarios incendies).

Scénario P01

En cas de défaillance du système d'arrêt automatique de l'éolienne en cas de survitesse, les contraintes importantes exercées sur la pale (vent trop fort) pourraient engendrer la casse de la pale et sa projection.

Les contraintes exercées sur les pales - contraintes mécaniques (vents violents, variation de la répartition de la masse due à la formation de givre...), conditions climatiques (averses violentes de grêle, foudre...) - peuvent entraîner la dégradation de l'état de surface et à terme l'apparition de fissures sur la pale.

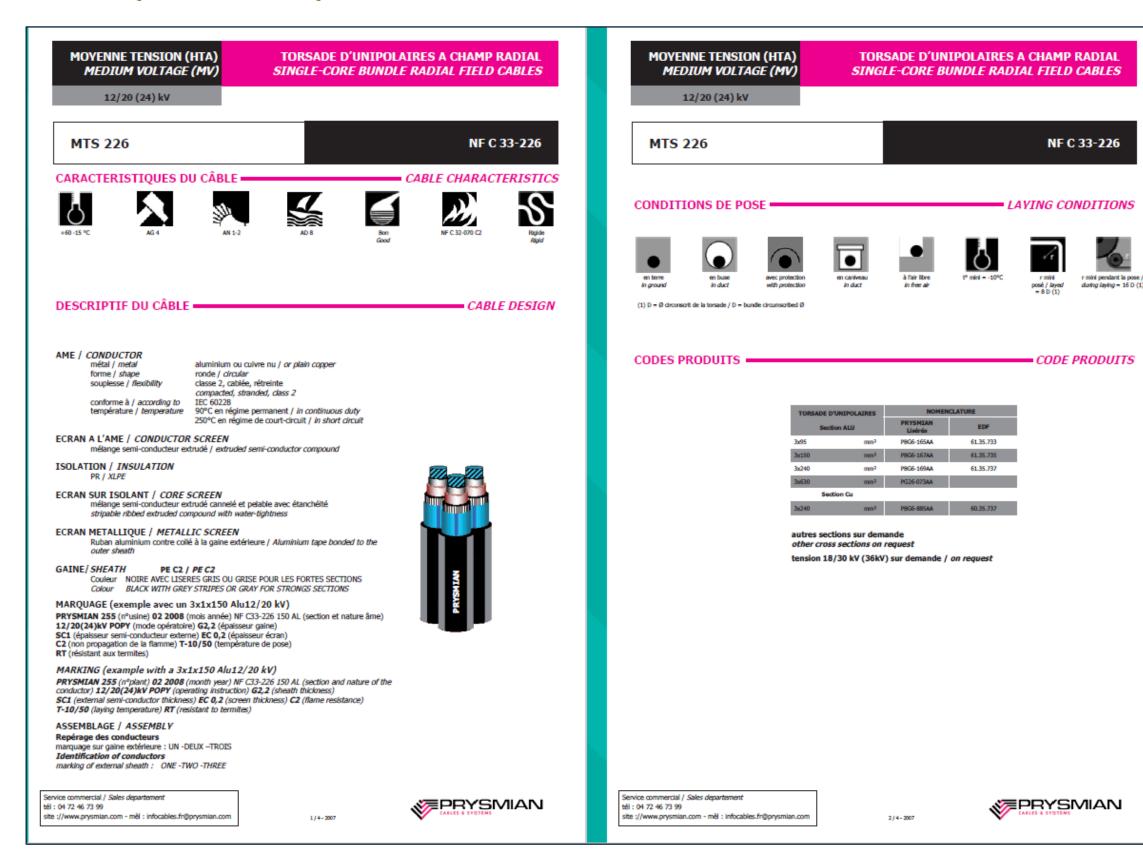
Prévention : Maintenance préventive (inspections régulières des pales, réparations si nécessaire)

Facteur aggravant : Infiltration d'eau et formation de glace dans une fissure, vents violents, emballement de l'éolienne

Scénarios P03

Un mauvais serrage de base ou le desserrage avec le temps des goujons des pales pourrait amener au décrochage total ou partiel de la pale, dans le cas de pale en plusieurs tronçons.

Scénarios relatifs aux risques d'effondrement des éoliennes (E01 à E10)


Les événements pouvant conduire à l'effondrement de l'éolienne sont liés à 3 types de facteurs pouvant intervenir indépendamment ou conjointement :

- Erreur de dimensionnement de la fondation : Contrôle qualité, respect des spécifications techniques du constructeur de l'éolienne, étude de sol, contrôle technique de construction ;
- Non-respect des instructions de montage et/ou de maintenance : Formation du personnel intervenant
- Causes externes dues à l'environnement : séisme, ...

11.4 ANNEXE 4 - CARACTERISTIQUES ET FICHES TECHNIQUES DES RESEAUX DE CABLES

MOYENNE TENSION (HTA) MEDIUM VOLTAGE (MV)

TORSADE D'UNIPOLAIRES A CHAMP RADIAL SINGLE-CORE BUNDLE RADIAL FIELD CABLES

12/20 (24) kV

MTS 226

ALUMINIUM NF C 33-226

CARACTERISTIQUES DIMENSIONNELLES — DIMENSIONAL CHARACTERISTICS

Section nominale Nominal cross section mm²	Ø de l'âme Conductor Ø (approx) mm	Ø maximum sur isolant Maximum Ø over insulation mm	Ø extérieur maximum Maximum outer Ø (approx) mm
3 x 1 x 50	8.2	21.9	29.0
3 x 1 x 95	11.3	25.4	32.0
3 x 1 x 150	14.2	25.1	33.4
3 x 1 x 240	18.0	29.6	38.3

Ø torsade	Hasse
bundle Ø	Mass
(approx) mm	(approx) kg/km
59.7	2 010
66.2	2 670
68.3	3 060
78.7	4 260

CARACTERISTIQUES ELECTRIQUES ELECTRICAL CHARACTERISTICS

Section nominale	Résistance maxi à 20°C	Résistance maxi à 90°C	Réactance à 50 Hz	Capacité		admissible current rating		tension se drop	
Nominal cross	en c.c. Maxi d.c.	en c.a. Maxi a.c.	Reactance	Capacitance	A l'air libre	Enterré Buried	cos ♥ = 0,3 cos ♥ = 0,8		
section mm ²	resistance at 20°C Ω/km	resistance at 90°C Ω/km	at 50 Hz (approx) Ω/km	(approx) µF/km	in free air 30°C A	20°C A		pprox) /A/km	
3 x 1 x 50	0.641	0.822	0.14	0.16	185	175	0.65	1.3	
3 x 1 x 95	0.320	0.411	0.12	0.20	266	252	0.42	0.70	
3 x 1 x 150	0.206	0.265	0.11	0.27	360	325	0.32	0.48	
3 x 1 x 240	0.125	0.161	0.10	0.32	490	428	0.26	0.33	

Intensité maximale en régime permanent pour 1 seule liaison composée de 3 unipolaires disposés en trèfle, écran mis à la terre à chaque extrémité, et conforme au projet de norme NF C 13-200. Elles sont également valables pour écran mis à la terre à 1 seule extrémité. Autres conditions :

à l'air libre, à l'abri du soleil, sur chemins de câbles ou corbeaux, échelles à câbles, fixé par des colliers et espacés de la paroi.
 enterré dans un sol de résitivité thermique de 1 K.m/W, profondeur de pose : 800 mm.

Les valeurs d'intensité admissible et de chute de tension mentionnées dans les tableaux sont celles d'une liaison TRIPHASE. Si les conditions sont différentes, appliquer les facteurs de correction du manuel technique PRYSMIAN.

Maximum permissible current rating in continuous duty for 1 line of 3 single cables in trefoil formation, screen grounded at each end, and according to NF C 13-200 project standard. They are also valid for screen grounded at one end.

in free air, sheltered from the sun, on cable trays or brackets, on cable ladders, fixed by cleats and separated from the wall
 buried in 1 K.m/W thermal resistivity, laying depth: 800 mm.

Permissible current values and voltage drops above-mentioned are those of a THREE-PHASE CURRENT line. If conditions are différents, apply PRYSMIAN catalog correction factors

tél: 04 72 46 73 99

site://www.prysmian.com - mèl: infocables.fr@prysmian.com

PRYSMIAN 3/4-2007

MOYENNE TENSION (HTA) MEDIUM VOLTAGE (MV)

TORSADE D'UNIPOLAIRES A CHAMP RADIAL SINGLE-CORE BUNDLE RADIAL FIELD CABLES

12/20 (24) kV

MTS 226

CUIVRE / COPPER NF C 33-226

CARACTERISTIQUES DIMENSIONNELLES ----DIMENSIONAL CHARACTERISTICS

Section nominale Nominal cross section mm²	Ø de l'âme Conductor Ø (approx) mm	9 maximum sur isolant Maximum Ø over insulation mm	Ø extériour maximum Maximum outer Ø (approx) mm	
3 x 1 x 50	3 x 1 x 50 8.1		29.0	
3 x 1 x 95	11.3	25.4	32.0	
3 x 1 x 150	14.2	25.1	33.4	
3 x 1 x 240	18.0	29.6	38.3	

Ø torsade bundle Ø (approx) mm	Masse Mass (approx) kg/km
59.1	2 840
65.6	4 370
68.3	5 750
78.7	8 730

CARACTERISTIQUES ELECTRIQUES ELECTRICAL CHARACTERISTICS

Section nominale	Résistance maxi à 20°C	Résistance maxi à 90°C	Réactance à 50 Hz	Capacité	Intersité admissible Permissible current rating		Chute de tension Voltage drop	
Nominal	en c.c.	en c.a.			A l'air libre	Enterré	cos 7 = 0,3	cos ₹ = 0,8
cross section mm ²	Maxi d.c. resistance at 20°C Ω/km	Maxi a.c. resistance at 90°C Q/km	Reactance at 50 Hz (approx) Ω/km	Capacitance (approx) µF/km	in free air 30°C A	Buriad 20°C A	(approx) V/A/km	
3 x 1 x 50	0.387	0.494	0.14	0.16	233	225	0.48	0.83
3 x 1 x 95	0.193	0.247	0.12	0.20	356	330	0.33	0.47
3 x 1 x 150	0.124	0.159	0.11	0.27	465	420	0.26	0.33
3 x 1 x 240	0.0754	0.098	0.10	0.32	630	549	0.22	0.24

Conditions de validité

Intensité maximale en régime permanent pour 1 seule liaison composée de 3 unipolaires disposés en trèfle, écran mis à la la terre à chaque extrémité, et conforme au projet de norme NF C 13-200. Elles sont également valables pour écran mis à la terre à 1 seule

 à l'air libre, à l'abri du soleil, sur chemins de câbles ou corbeaux, échelles à câbles, fixé par des colliers et espacés de la paroi. enterré dans un sol de résitivité thermique de 1 K.m/W, profondeur de pose : 800 mm.

Les valeurs d'intensité admissible et de chute de tension mentionnées dans les tableaux sont celles d'une liaison TRIPHASE. Si les conditions sont différentes, appliquer les facteurs de correction du manuel technique PRYSMIAN.

Maximum permissible current rating in continuous duty for 1 line of 3 single cables in trefoil formation, screen grounded at each end, and according to NF C 13-200 project standard. They are also valid for screen grounded at one end.

• in free air, sheltered from the sun, on cable trays or brackets, on cable ladders, fixed by cleats and separated from the wall

buried in 1 K.m/W thermal resistivity, laying depth : 800 mm.
 Permissible current values and voltage drops above-mentioned are those of a THREE-PHASE CURRENT line.

If conditions are différents, apply PRYSMIAN catalog correction factors

Service commercial / Sales departement tél: 04 72 46 73 99

4/4-2007

CABLE DESIGN

FICHE TECHNIQUE GAINE DE PROTECTION Ø 40 x 3.7

DIAMÈTRE EXTÉRIEUR 40 mm TOLERANCE DIAMETRE +0,3/-0 EPAISSEUR DE LA PAROI TOLERANCE EPAISSEUR 3,7 +0,3 / -0,1

TENUE A LA TEMPERATURE

TRANSPORT -20°C à +60°C -15°C à +40°C

RAYON DE COURBURE MINIMAL ADMISSIBLE A LA POSE SUIVANT LA TEMPERATURE :

20 x D à 20°C 40 x D à 0°C 60 x D à -10°C

DIAMETRE D'ENROULEMENT SUR TOURET EN PRODUCTION:

17-20 x D mini

OVALISATION

5% en sortie de production

10% sur tube enroulé

MATIERE

DENSITE

comprise entre 930 et 956 kg/cqm (NF EN ISO 1183 - DIN 8074 / 8075)

TENEUR EN NOIR DE CARBONE

2% (+0.3% / -0.3%) (NF EN ISO 6964 - DIN 8074 / 8075)

CONTRAINTE AU SEUIL

supérieure à 16N/gmm (NF EN ISO 6259 - DIN EN ISO 527-1)

ALLONGEMENT A LA RUPTURE

supérieure à 350% (NF EN ISO 6259 - DIN EN ISO 527-1)

RESISTANCE A LA PRESSION

170h / 80°C / 4,0b (NF EN ISO 1167 - DIN EN 8074 / 8075)

10h / 20°C / 8b....10b

RETRAIT LONGITUDINAL A CHAUD

inférieur à 3% (NF EN ISO 2505 - DIN 8074 / 8075)

Rainuré et lubrifié à l'huile de silicone

Tourets:

hauteur 2,20m / 2,43m

largeur 1,12m

Longueur tube par touret : 2000 - 2400 ml

Remarque: D'autres épaisseurs de parois ou grandeurs de tourets ou longueurs de tubes par tourets sur demande, s'il vous plaît

V04/D/20.02.09

CABLES DE TERRE **EARTHING CABLES**

CABLES DE TERRE CUIVRE NU BARE COPPER EARTHING CABLES

300/500 V

Conducteur nu PVC Plomb


NF C 32-013 - HD 383 BS 6360 - IEC 60228

DESCRIPTIF DU CÂBLE,

AME / CONDUCTOR métal / metal

cuivre nu / bare copper forme / shape souplesse / flexibility

ronde / draular câblée, classe 2 / stranded, class 2 conforme à / according to NF C 32-013, HD 383, BS 6360, IEC 60228

Code	Section	Résistance	Ø du		Intensité admissible en court-circuit (A)			
produit	nominale	maxi en c.c.	conducteur	Masse	Permissible short-circuit current (A)			
	Nominal	Maxi d.c.	Conductor Ø	Mass				
Code	cross	resistance			Temps de coupure (s)			
product	section	à /at 20°C	(approx)	(approx)	Cut-out time (s)			
	mm²	ohm/km	mm	kg/km	0.2	0.5	1	2
CUR2018	1 x 10	1.83	3.8	93	3 345	2 115	1 495	1 060
CUR2019	1 x 16	1.15	4.7	148	5 355	3 385	2 390	1 690
CUR2020	1 x 25	0.727	6.0	236	8 365	5 290	3 740	2 645
CUR2021	1 x 35	0.524	7.0	330	11 710	7 405	5 240	3 700
CUR2022	1 x 50	0.387	8.1	440	16 730	10 580	7 480	5 290
CUR2023	1 x 70	0.268	9.7	630	23 420	14 810	10 475	7 405
CUR2024	1 x 95	0.193	11.4	890	31 785	20 100	14 215	10 050
CUR2025	1 x 120	0.153	12.9	1 130	40 150	25 390	17 955	12 695
CUR2026	1 x 150	0.124	14.2	1 390	50 185	31 740	22 440	15 870
CUR2027	1 x 185	0.0991	16.0	1 700	61 900	39 145	27 681	19 570
CUR2028	1 x 240	0.0754	18.4	2 200	80 300	50 780	35 910	25 390
CUR2029	1 x 300	0.0601	20.6	2 810	100 370	63 480	44 885	31 740

Condition de validité des intensités / Permissible current rating validity terms

température initiale / initial temperature = 20 °C température finale / final temperature = 160 °C

(1) selon CEI 60724 / according to IEC 60724

Rayon de courbure / Bending radius - UTE C 30-300 en installation fixe / in fixed installation 6 D

en cours de pose / during laying 12 D

 Quelque soit le mode de pose et de déroulage, l'effort de tirage ne doit en aucun cas dépasser 6 daN/mm2. Whatever the method of laying and unreel, tractive force must not be higher than 6 daN/mm2

Service commercial / Sales department

tél.: 04 72 46 73 99

site://www.prysmian.com - mèl: infocables.fr@prysmian.com

11.5 ANNEXE 5 - PROBABILITE D'ATTEINTE ET RISQUE INDIVIDUEL

Le risque individuel encouru par un nouvel arrivant dans la zone d'effet d'un phénomène de projection ou de chute est appréhendé en utilisant la probabilité de l'atteinte par l'élément chutant ou projeté de la zone fréquentée par le nouvel arrivant.

Cette probabilité est appelée probabilité d'accident.

Cette probabilité d'accident est le produit de plusieurs probabilités :

P_{accident} = P_{ERC} x P_{orientation} x P_{rotation}x P_{atteinte} x P_{présence}

P_{ERC} = probabilité que l'événement redouté central (défaillance) se produise = probabilité de départ

P_{orientation} = probabilité que l'éolienne soit orientée de manière à projeter un élément lors d'une défaillance dans la direction d'un point donné (en fonction des conditions de vent notamment)

P_{rotation} = probabilité que l'éolienne soit en rotation au moment où l'événement redouté se produit (en fonction de la vitesse du vent notamment)

P_{atteinte} = probabilité d'atteinte d'un point donné autour de l'éolienne (sachant que l'éolienne est orientée de manière à projeter un élément en direction de ce point et qu'elle est en rotation)

P_{présence} = probabilité de présence d'un enjeu donné au point d'impact sachant que l'élément est projeté en ce point donné

Par souci de simplification, la probabilité d'accident sera calculée en multipliant la borne supérieure de la classe de probabilité de l'événement redouté central par le degré d'exposition. Celui-ci est défini comme le ratio entre la surface de l'objet chutant ou projeté et la zone d'effet du phénomène.

Le tableau ci-dessous récapitule les probabilités d'atteinte en fonction de l'événement redouté central.

Evènement redouté central	Borne supérieure de la classe de probabilité de l'ERC (pour les éoliennes récentes) Degré d'exposition de la classe de probabilité de l'ERC (pour les éoliennes récentes)		Probabilité d'atteinte		
Effondrement	10 ⁻⁴	10 ⁻²	10 ⁻⁶ (E)		
Chute de glace	1	5*10 ⁻²	5 10 ⁻² (A)		
Chute d'éléments	10 ⁻³	1,8*10 ⁻²	1,8 10 ⁻⁵ (D)		
Projection de tout ou partie de pale	10 ⁻⁴	10 ⁻²	10 ⁻⁶ (E)		
Projection de morceaux de glace	10-2	1,8*10 ⁻⁶	1,8 10 ⁻⁸ (E)		

Les seuls ERC pour lesquels la probabilité d'atteinte n'est pas de classe E sont ceux qui concernent les phénomènes de chutes de glace ou d'éléments dont la zone d'effet est limitée à la zone de survol des pales et où des panneaux sont mis en place pour alerter le public de ces risques.

De plus, les zones de survol sont comprises dans l'emprise des baux signés par l'exploitant avec le propriétaire du terrain ou à défaut dans l'emprise des autorisations de survol si la zone de survol s'étend sur plusieurs parcelles. La zone de survol ne peut donc pas faire l'objet de constructions nouvelles pendant l'exploitation de l'éolienne.

11.6 ANNEXE 6 - GLOSSAIRE

Les définitions ci-dessous sont reprises de la circulaire du 10 mai 2010. Ces définitions sont couramment utilisées dans le domaine de l'évaluation des risques en France.

Accident: Evénement non désiré, tel qu'une émission de substance toxique, un incendie ou une explosion résultant de développements incontrôlés survenus au cours de l'exploitation d'un établissement qui entraîne des conséquences/dommages vis-à-vis des personnes, des biens ou de l'environnement et de l'entreprise en général. C'est la réalisation d'un phénomène dangereux, combinée à la présence d'enjeux vulnérables exposés aux effets de ce phénomène.

Cinétique: Vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables (cf. art. 5 à 8 de l'arrêté du 29 septembre 2005). Dans le tableau APR proposé, la cinétique peut être lente ou rapide. Dans le cas d'une cinétique lente, les enjeux ont le temps d'être mises à l'abri. La cinétique est rapide dans le cas contraire.

Danger: Cette notion définit une propriété intrinsèque à une substance (butane, chlore...), à un système technique (mise sous pression d'un gaz...), à une disposition (élévation d'une charge...), à un organisme (microbes), etc., de nature à entraîner un dommage sur un « élément vulnérable » (sont ainsi rattachées à la notion de « danger » les notions d'inflammabilité ou d'explosivité, de toxicité, de caractère infectieux, etc. inhérentes à un produit et celle d'énergie disponible [pneumatique ou potentielle] qui caractérisent le danger).

Efficacité (pour une mesure de maîtrise des risques) ou capacité de réalisation : Capacité à remplir la mission/fonction de sécurité qui lui est confiée pendant une durée donnée et dans son contexte d'utilisation. En général, cette efficacité s'exprime en pourcentage d'accomplissement de la fonction définie. Ce pourcentage peut varier pendant la durée de sollicitation de la mesure de maîtrise des risques. Cette efficacité est évaluée par rapport aux principes de dimensionnement adapté et de résistance aux contraintes spécifiques.

Evénement initiateur : Événement, courant ou anormal, interne ou externe au système, situé en amont de l'événement redouté central dans l'enchaînement causal et qui constitue une cause directe dans les cas simples ou une combinaison d'événements à l'origine de cette cause directe.

Evénement redouté central: Evénement conventionnellement défini, dans le cadre d'une analyse de risque, au centre de l'enchaînement accidentel. Généralement, il s'agit d'une perte de confinement pour les fluides et d'une perte d'intégrité physique pour les solides. Les événements situés en amont sont conventionnellement appelés « phase pré-accidentelle» et les événements situés en aval « phase post-accidentelle ».

Fonction de sécurité: Fonction ayant pour but la réduction de la probabilité d'occurrence et/ou des effets et conséquences d'un événement non souhaité dans un système. Les principales actions assurées par les fonctions de sécurité en matière d'accidents majeurs dans les installations classées sont: empêcher, éviter, détecter, contrôler, limiter. Les fonctions de sécurité identifiées peuvent être assurées à partir d'éléments techniques de sécurité, de procédures organisationnelles (activités humaines), ou plus généralement par la combinaison des deux.

Gravité: On distingue l'intensité des effets d'un phénomène dangereux de la gravité des conséquences découlant de l'exposition d'enjeux de vulnérabilités données à ces effets. La gravité des conséquences potentielles prévisibles sur les personnes, prises parmi les intérêts visés à l'article L. 511-1 du code de l'environnement, résulte de la combinaison en un point de l'espace de l'intensité des effets d'un phénomène dangereux et de la vulnérabilité des enjeux potentiellement exposés.

Indépendance d'une mesure de maîtrise des risques : Faculté d'une mesure, de par sa conception, son exploitation et son environnement, à ne pas dépendre du fonctionnement d'autres éléments et notamment d'une part d'autres mesures de maîtrise des risques, et d'autre part, du système de conduite de l'installation, afin d'éviter les modes communs de défaillance ou de limiter leur fréquence d'occurrence.

Intensité des effets d'un phénomène dangereux : Mesure physique de l'intensité du phénomène (thermique, toxique, surpression, projections). Parfois appelée gravité potentielle du phénomène dangereux (mais cette expression est source d'erreur). Les échelles d'évaluation de l'intensité se réfèrent à des seuils d'effets moyens conventionnels sur des types d'éléments vulnérables [ou enjeux] tels que « homme », «structures». Elles sont définies, pour les installations classées, dans l'arrêté du 29/09/2005. L'intensité ne tient pas compte de l'existence ou non d'enjeux exposés. Elle est cartographiée sous la forme de zones d'effets pour les différents seuils.

Mesure de maîtrise des risques (ou barrière de sécurité) : Ensemble d'éléments techniques et/ou organisationnels nécessaires et suffisants pour assurer une fonction de sécurité. On distingue parfois :

- les mesures (ou barrières) de prévention : mesures visant à éviter ou limiter la probabilité d'un événement indésirable, en amont du phénomène dangereux
- les mesures (ou barrières) de limitation : mesures visant à limiter l'intensité des effets d'un phénomène dangereux
- les mesures (ou barrières) de protection : mesures visant à limiter les conséquences sur les enjeux potentiels par diminution de la vulnérabilité.

Phénomène dangereux: Libération d'énergie ou de substance produisant des effets, au sens de l'arrêté du 29 septembre 2005, susceptibles d'infliger un dommage à des enjeux (ou éléments vulnérables) vivantes ou matérielles, sans préjuger l'existence de ces dernières. C'est une « Source potentielle de dommages »

Potentiel de danger (ou « source de danger », ou « élément dangereux », ou « élément porteur de danger ») : Système (naturel ou créé par l'homme) ou disposition adoptée et comportant un (ou plusieurs) « danger(s) » ; dans le domaine des risques technologiques, un « potentiel de danger » correspond à un ensemble technique nécessaire au fonctionnement du processus envisagé.

Prévention: Mesures visant à prévenir un risque en réduisant la probabilité d'occurrence d'un phénomène dangereux.

Protection: Mesures visant à limiter l'étendue ou/et la gravité des conséquences d'un accident sur les éléments vulnérables, sans modifier la probabilité d'occurrence du phénomène dangereux correspondant.

Probabilité d'occurrence: Au sens de l'article L. 512-1 du code de l'environnement, la probabilité d'occurrence d'un accident est assimilée à sa fréquence d'occurrence future estimée sur l'installation considérée. Elle est en général différente de la fréquence historique et peut s'écarter, pour une installation donnée, de la probabilité d'occurrence moyenne évaluée sur un ensemble d'installations similaires.

Attention aux confusions possibles :

- 1. Assimilation entre probabilité d'un accident et celle du phénomène dangereux correspondant, la première intégrant déjà la probabilité conditionnelle d'exposition des enjeux. L'assimilation sous-entend que les enjeux sont effectivement exposés, ce qui n'est pas toujours le cas, notamment si la cinétique permet une mise à l'abri
- 2. Probabilité d'occurrence d'un accident x sur un site donné et probabilité d'occurrence de l'accident x, en moyenne, dans l'une des N installations du même type (approche statistique).

Réduction du risque : Actions entreprises en vue de diminuer la probabilité, les conséquences négatives (ou dommages), associés à un risque, ou les deux. [FD ISO/CEI Guide 73]. Cela peut être fait par le biais de chacune des trois composantes du risque, la probabilité, l'intensité et la vulnérabilité :

- Réduction de la probabilité : par amélioration de la prévention, par exemple par ajout ou fiabilisation des mesures de sécurité
- Réduction de l'intensité :
 - par action sur l'élément porteur de danger (ou potentiel de danger), par exemple substitution par une substance moins dangereuse, réduction des vitesses de rotation, etc.
 - réduction des dangers: la réduction de l'intensité peut également être accomplie par des mesures de limitation

La réduction de la probabilité et/ou de l'intensité correspond à une réduction du risque « à la source ».

• Réduction de la vulnérabilité : par éloignement ou protection des éléments vulnérables (par exemple par la maîtrise de l'urbanisation, ou par des plans d'urgence).

Risque : « Combinaison de la probabilité d'un événement et de ses conséquences » (ISO/CEI 73), « Combinaison de la probabilité d'un dommage et de sa gravité » (ISO/CEI 51).

Scénario d'accident (majeur): Enchaînement d'événements conduisant d'un événement initiateur à un accident (majeur), dont la séquence et les liens logiques découlent de l'analyse de risque. En général, plusieurs scénarios peuvent mener à un même phénomène dangereux pouvant conduire à un accident (majeur): on dénombre autant de scénarios qu'il existe de combinaisons possibles d'événements y aboutissant. Les scénarios d'accident obtenus dépendent du choix des méthodes d'analyse de risque utilisées et des éléments disponibles.

Dossier de demande d'autorisation environnementale

Temps de réponse (pour une mesure de maîtrise des risques): Intervalle de temps requis entre la sollicitation et l'exécution de la mission/fonction de sécurité. Ce temps de réponse est inclus dans la cinétique de mise en œuvre d'une fonction de sécurité, cette dernière devant être en adéquation [significativement plus courte] avec la cinétique du phénomène qu'elle doit maîtriser.

Les définitions suivantes sont issues de l'arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement :

Aérogénérateur: Dispositif mécanique destiné à convertir l'énergie du vent en électricité, composé des principaux éléments suivants: un mât, une nacelle, le rotor auquel sont fixées les pales, ainsi que, le cas échéant, un transformateur Survitesse: Vitesse de rotation des parties tournantes (rotor constitué du moyeu et des pales ainsi que la ligne d'arbre jusqu'à la génératrice) supérieure à la valeur maximale indiquée par le constructeur.

Enfin, quelques sigles utiles employés dans le présent guide sont listés et explicités ci-dessous :

ICPE: Installation Classée pour la Protection de l'Environnement

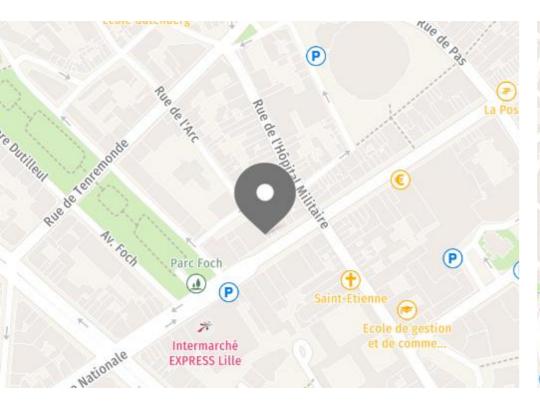
SER: Syndicat des Energies Renouvelables

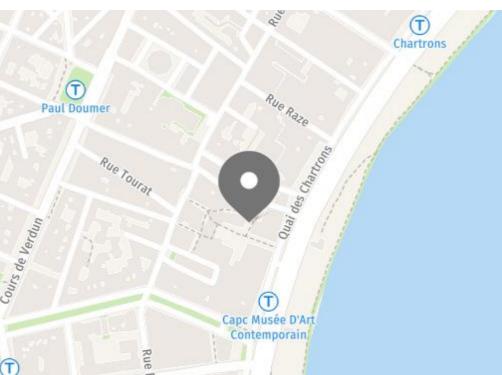
FEE: France Energie Eolienne

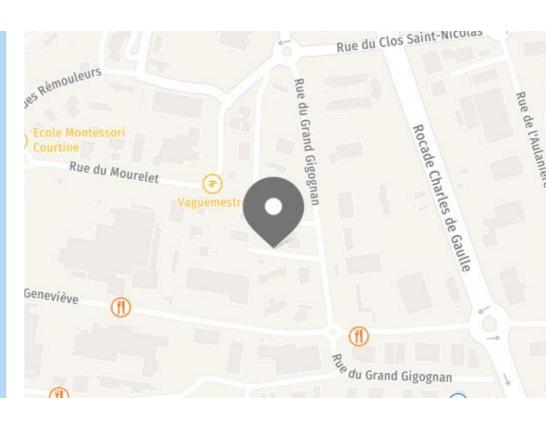
INERIS: Institut National de l'EnviRonnement Industriel et des RisqueS

EDD: Etude de dangers

APR: Analyse Préliminaire des Risques **ERP**: Etablissement Recevant du Public


Dossier de demande d'autorisation environnementale




11.7 ANNEXE 7 - BIBLIOGRAPHIE ET RÉFÉRENCES UTILISÉES

- [1] L'évaluation des fréquences et des probabilités à partir des données de retour d'expérience (ref DRA-11-117406-04648A), INERIS, 2011
- [2] NF EN 61400-1 Eoliennes Partie 1 : Exigences de conception, Juin 2006 et suivante
- [3] Wind Turbine Accident data, Caithness Windfarm Information Forum
- [4] Site Specific Hazard Assessment for a wind farm project Case study Germanischer Lloyd, Windtest Kaiser-Wilhelm-Koog GmbH, 2010/08/24
- [5] Guide for Risk-Based Zoning of wind Turbines, Energy research centre of the Netherlands (ECN), H. Braam, G.J. van Mulekom, R.W. Smit, 2005
- [6] Specification of minimum distances, Dr-ing. Veenkeringenieurgesellschaft, 2004
- [7] Permitting setback requirements for wind turbine in California, California Energy Commission Public Interest Energy Research Program, 2006
- [8] Oméga 10 : Evaluation des barrières techniques de sécurité, INERIS, 2005
- [9] Arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement
- [10] Arrêté du 29 Septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation
- [11] Circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 Juillet 2003
- [12] Bilan des déplacements en Val-de-Marne, édition 2009, Conseil Général du Val-de-Marne
- [13] Arrêté du 29 Septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation
- [14] Alpine test site Gütsch: monitoring of a wind turbine under icing conditions- R. Cattinetal.
- [15] Wind energy production in cold climate (WECO), Final report Bengt Tammelin et al. Finnish Meteorological Institute, Helsinki, 2000
- [16] Rapport sur la sécurité des installations éoliennes, Conseil Général des Mines Guillet R., Leteurtrois J.-P. juillet 2004
- [17] Risk analysis of ice throw from wind turbines, Seifert H., Westerhellweg A., Kröning J. DEWI, avril 2003
- [18] Wind energy in the BSR: impacts and causes of icing on wind turbines, Narvik University College, novembre 2005

RP Global France

213 Boulevard de Turin 59777 Lille **RP Global France Antenne Bordeaux**

Les Bureaux de la Cité Mondiale 23 Parvis des Chartrons 33000 Bordeaux RP Global France
Antenne Avignon

395 rue du Grand Gigognan 84000 Avignon

Tel: +33 (0)3 20 51 16 59

E-mail : contactfrance@rp-global.com
www.rp-global.com

